
NASA Contractor Report 181732

Application Developer's Tutorial for

the CSM Testbed Architecture

II_ASA-CI_- 1817 32) IPPLICATI_ _ E_VELCPER*S
2UfO_IAL FO_ 7£E CSM _SIB_£ _C_I_ECTUBE

([ockheed .Sis_iies and S_ace Co.) 9g .p
CSCL 20K

G3/39

N89-1q433

Uncla£

0185074

Phillip Underwood and Carlos A. Felippa

Lockheed Missiles and Space Company, Inc.

P_1o Alto, California

Contract NAS 1-18444

October 1988

N6SA
Nationat Aeronaul_cs _tnd
Space Administrat,on

Langley Research Center
Hampton, Virginia 23665-5225

Introduction

1. Introduction

This tutorial is an extension of I1]_ Appendix D to include a simple interface to (;._.I,-

DBM (Global Access Library - Database Management), the database management system

for the CSM Testbed Architecture. GAL-DBM is described in [2]. The goal is to present

a complete, but simple, introduction to using both CLIP (Command Language Interface

Program) and (;AI, to write a NICE Processor. To achieve this goal the first author has

extended the second author's work to include the interface to GAL. Much of the previous

text describing commands and CLIP has been retained to make the tutorial stand alone.

Before beginning this tutorial, you should be familiar with the CSM Testbed Archi-

tecture (NICE). As a minimum you should: read Ill Appendices C & D -- make sure you

understand the use of the CLIP entry points, which may require a reading of [1]; and read

I21 --- at least be familiar with the ideas for nominal datasets.

The example Processor presented here is still quite simple as production Processors

go, but is no longer trivial. It requires one to two weeks to put together. The Processor

solves a two-dimensional elastostatic problem by a directly-formulated* Boundary Element

Method (BEM), and is named, appropriately, DBEM2.

The "kernel" of the Processor is a BEM-program adapted from the book Boundary

Element Methods in Solid Mechanics by S. L. Crouch and A. M. Starfield [41. The program

is called TWOBI and is presented in Appendix C of the book; it is based on the boundary-

integral theory covered in Section 6 therein.

The program is appropriate as an example of the use of interactive techniques because

the input data are fairly simple but the commands are of multiple-item type and thus

serve to illustrate things like phrases, item lists, qualifiers, and defaults. The program is

somewhat weak for illustrating the true use of a database. However, it is relatively simple,

so we can concentrate on the mechanics of using GAL. Ways to extend DBEM2 and use

(,AL for more complex problem solving are discussed as we proceed through this example

Processor.

To prepare the reader for subsequent sections we need to cover some background

material on the GAI_-I)IIM [2!.

The two-level conceptual model of C,AI_ must be understood; see I2], §2.2. The two-

levels of data in nominal GAL are named datasets and named records. The GAL database

file is usually called a Library. In this lAbrary are books (datasets) and in the books

are chapters (records). In this tutorial example we will only consider one active Library;

however, complex Processors can have several active GAL-DBM Libraries. We will have

several datasets and several associated records in our one Library.

t Numbers in brackets refer to references at. end of report.

* The term direct formt,lation refers to the technique used in deriving the governing boundary-

integral equations. Direct methods are formulated from the start in terms of physical quan-

tities such as displacement and stress fluxes. On the other hand, indirect methods are

formulated in terms of source strength distributions, which have no direct physical meaning

and are eventually eliminated following spatial discretization.

Revised 10/21/1988 Developer's Tutorial for the CSM Testbed Architecture 1- 1

Introduction

Tile two-level conceptual model of GAL must be understood; see [2], §2.2. The two-

levels of data in nominal GA[, are named datasets and named records. The GAL datal)ase

file is usually called a Library. In this Library are books (datasets) and in tile books

are chapters (records). In this tutorial example we will only consider one active Library;

however, (:omplex Processors can have several active GAL-DBM Libraries. We will have

several datasets and several associated records ill our one l,ibrary.

Datasets are usually chosen as functional groups of data records. If you are famil-

iar with the programming language C, a dataset is analogous to a structure and GAL

records are just like member definitions within a structure. In the boundary element

method and in other discrete element methods, such as finite element methods, typical

functional groups of data are geometry, material, boundary conditions, Ioadings, elements,

system matrices (coefficient or stiffness), system vectors (right-hand-side(s), solution(s),
etc.), stress/strain/resultants, etc.

For example, we may decide to have a dataset named GEOMETRY and in this data_set

there may be records named _IUMBER_.NODES, _IODES, COORDS (or X-COORDS, Y-COORDS,

...), etc. For this tutorial the geometry data is stored in a dataset named SEGMENT; see
 3.1.

In this tutorial, we will use fixed or "hardwired" names for the datasets and records.

This simplifies the Processor and lets us get, on with how to use GAL, without getting into

the complex issues of tables and their management to relate Library dataset names and

record names to the names used internally in the Processor.]n addition, the command

set would have to be expanded to include commands to bind the external database names

with the internal Processor names. In general fixed names work well with tightly coupled
Processors, because they don't interact much with other Processors. The fixed names also

make the Processor much easier for the user to run. The user doesn't have to remember

as many commands or keep track of where the data really are. Loosely coupled networks

of Processors may need the capability to use datasets and records of any given name.

However, even fixed dataset and record names can be changed by using the *rename

dataset and/or the *rename record directives; see [3], §53.1 & §53.2.

Another GAL-DBM feature is word addressability. With this feature a particular

entry in a data.set-record can be extracted or stored [2], §5.1. For example, the i-th entry

for the geometry nodes, X-C00RDS k Y-C00RDS, can easily be extracted. This feature can

be used for out-of-core techniques. In actual practice experienced Processor developers

use a local dynamic memory manager for out-of-core methods, because they are usually

more efficient than GAL. GAL was designed for eflicien! use of archival data. These are

advanced concepts. They are not covered i_l this tutorial, but the developer should be

aware of these issues especially for large problet_ls.

1- 2 Developer's Tutorial for the CSM Testbe(l Architecture Revised 10/13/1988

The Data Structures

3. The Data Structures

Following sound practice, we begin by designing the datn struct.r_s. Tbo t.l,qk is more

complicated for I)BEM2 than for the simph' program in Ill Al,pendix C. We will retain

DBEM2 as a single Processor, but add a global database thal. corresponds to the data

structures and functions in DBEM2. Possil)h, avenues to explore in separating DBEM2

into several Processors are presented, but not pursued in det)th. The main use of tile

database in this example is to archive problem data for a restarl, archive problem data to

document what was done, and archiw_ problem data so that some old data can be used with

new input to solve a slightly different prot)h,m. Our main goal, to illustrate the me(:hanics

of using GAI,, is well served by this appro;tch.

The task iv simplified by the followin_ considerations:

1. The Processor presented her(, is isolat('d from others. Th('re is no need to transact

I)tminess wilh a global database generaled by other l'rocessors.

2. DBEM2 makes use of only one tnatrix, which is generally unsymmetric and full. There

being no need to make use of sparse storage formats, an ordinary FORTRAN array

suf_ces.

3. Everything is assumed to fit in core at one time. Not having to deal with auxiliary

storage avoids many complications.
4. The internal data structures and the (;AI, dataset-record structures are tile same.

All data that have to be shared among many parts of 1)BEM2 are accommodated in

labelled common blocks. The first author is not in favor of using labelled common blocks

for moving data from one subroutine lo another, but it iv retained here for expediency.

Thus ir_ the present Processor several blocks are used to group data according to function.

Furthermore, the })locks are declared in separate files whose extension is inc. These files

are inserted where they are needed via II_CLUDE statements. The use of INCLUDE enforces

consistency (everything is declared only once) and mak(rs maintenance and modification

much easier.

Remember that in §l.0 we said we would use fixed dataset name_ and record names.

Thus, here we will use, wher(,v('r possibl(', l,lw lat)elled c()mmon block name for the dataset

flame and the variable names ift the labelled co[rtmofl block will be the sarne as the record

names. In a few cases we will have to break ¢)n,' labelled (:o,]rnon block into two or three

separate datas_,ts to achiew' a r(mlislriC fun(-lional group for the d;_ta. In these cases we

create new, bul hopefully meaningful, uanws.

Revised 10/20/1988 l)eveh)l)er's Tutorial for the CSM 'l'estl)ed Architecture 3- 1

The Segment Data The Data Structures

3.1 The Segment Data

We begin by sett, ing up the data for I)oun,lary segments, which is pl;,'e,I in flit, seg-

ment. inc. The maximum number of segments is parameterized to be MAXSEG, which is set
to 20 in the version listed below.

Tile DBEM2 user will be allowed to define segments in any order and give them

arbitrary numbers from 1 through MAXSEG, so we need a "marker" array that tells which

segments have been defined. We also need a counter of how many boundary elements are

in each defined segment. Then there are the geometric arrays: the x and y coordinates of

the end points. Finally, there are the boundary condition arrays: one integer code (related

to that used by reference 4) and two floating-point arrays of prescribed shear and normal

values. Here is a list of the file that groups this information:

:_ This is the file segment.inc
:k

common /SEGMENT DATA/

$ segdef, numel, xbeg, ybeg, xend, yend, kode, bvs, bvn

integer MAXSEG

parameter (MAXSEG=20) ! Maximum no. of boundary segments

integer segdef(MAXSEG) ! Segment definition tag
integer numeI(MAXSEG) ! }_umber of BE divisions of segment

real xbeg(MAXSEG) ! X-coord of starting segment point

real ybeg(MAXSEG) ! Y-coord of starting segment point

real xend(MAXSEG) ! X-coord of ending segment point
real yend(MhXSEG) ! Y-coord of ending segment point

integer kode(MAXSEG) ! Segment BC code
real bvs(MAXSEG) i Prescribed shear value

real bvn(MAXSEG) i Prescribed normal value

The style used in this II]CLUDE file will be followed for all others. There is a COMMON

declaration that lists the shared variables. Then each variable is declared on a separate

line. The variable name is followed by an inline comment that provides a short description
of the function of each variable. This brief documentation should be entered at the time

you prepare or update the I_ICLUDE file; if you leave it for later, it'll never be done.

When you get farther into this tutorial you will see that the segment data described

here is generated in at least two subroutines an(] t)ossibly three, if you define non-default

data for the number of BE divisions of a segment. Thus to maintain a functional breakdown

of data in the database, these data are divided ii_to two datasets: 1) SEGMEI_T with records

named SEGDEF, IJUMEL, XBEG, YBEG, XEIID,atl(lYEIJ_ tha! hol(lsegdef, numel, xbeg,

ybeg. xend, and yend one-dimensional array data; and 2) BCVALUES with records named

KODE, BVS, and BVH that },ol(lthe kode, bvs, and bvn one-dimensional data. The default

value for numel is 1, however you may enier other values by using the DEFINE ELEMENTS

command. Data generated by 1his command are wrilten over the defauh data created in

the DEFII{E SEGME_ITS code.

3- 2 Developer's Tutorial for the CSM Testbed Architecttlre Revised 10/13/1988

The Data Structures The Segment Data

Although this simple structure for the datasets and records may seem trivial, it is

quite common even in a complex Processor. That is, the data in the database are often

structured just as the data are used in the code. Also, note that, the two level structure

of GAL, named datasets with named records, lends itself to a functional grouping of the

data with names that are easy to relate to the data generated and used by the Processor.

This simple structure for the datasets and the records will be used throughout the DBEM2

Processor.

In summary, we have defined two datasets with their associated records as:

Dataset- SEGMENT

Records- SEGDEF

NUMEL

XBEG

YBEG

XEND

YEND

and

Dataset- BCVALUES

Records- KODE

BVS

BVN

Revised 10/13/1988 Developer's Tutorial for the CSM Testbed Architecture 3- 3

The Material Data The Data Structures

3.2 The Material Data

Since we are dealing with a homogeneous elastic isotropic material and we ignore

t herrnal effects, the material is fully characterized by two properties: the elastic modulus

E and the Poisson's ratio t,. These, two are colle¢'icd in tile material, inc :

This is the file material.inc

common /MATERIAL/ em, pr
real em ! Elastic modulus

real pr ! Poisson's ratio

[tere the entry for tile database is very simple to design. We use a dataset named

MATERIAL with two records named EM and PR to siore the vahles for era and pr. Thus, this

dataset has the following two level struclure:

Dataset- MATERIAL

Records- EM

PR

3- 4 uevetoptr, Tutorial fl)r the C,SM Testbed Architecture, Revised 10/13/1988

The Data Structures The Symmetry Data

• 3.3 The Symmetry Data

The program allows one or two lines parallel to tile coordinate axes to be sp_,cifif,,t

as axes of symmetry. For example, x : 2.5 or y = -1.50, or both. Three pieces of data

accommodate this information: one symmetry tag (0=none, l=symmetry about x = a,

2 = symmetry about y == b, 3 = double symmetry), and the values of a and b as appropriate.

The necessary declarations are placed in the file symmetry, inc :

This is the file synmetry.inc

common /SYMMETRY_DATA/

$ ksym, xsym, ysym

integer ksym ! symmetry tag

real xsym, ysym ! symmetry about x=a _ y=b values

These data are very similar to the MATERIAL dataset above, so we choose a similar

design for the SYMMETRY dataset and records. Ilere itis:

Dataset- SYMMETRY

Records- KSYM

XSYM

YSYM

Revised 10/20/1988 Developer's Tutorial for the CSM Testbed Architecture 3- 5

The Prestress Data The l)ata Structures

3.4 The Prestress Data

The program allows a co0stant initial-stress fiehl to exist in the undeformed medi,,m.

o o ° alld o 0]f tin-This prestress tensor field is defined by the three cornp(}neTItS a:_z, YY _:Y"

File prestress.irtc contains thedefined, these three values are assumed to be z(,ro.

appropriate declarations:

q,

* This is the file prestress.in¢

common /PRESTRESS/ sxxO. syyO. sxyO

real sxxO ! Prestress (initial field stress) sigma_xx

real syyO ! Ibid., for sigma_yy

real sxyO ! Ibid,, for sigmaxy

Prestress data are especially important for analysis of unbounded domains, for which

they assume the role of conditions at infinity. For example, suppose that we want to

analyze the effect of a hole in an infillil.e region under uniform uniaxial stress, say #z,.
_) - () I)

Then we set a_z = a_, a_ = aZ_ - 0 in the input data.

Again very similar to MATERIAL and SYMMETRY, so we have:

Dataset- PRESTRESS

Records- SXXO

SYYO

SXYO

3- 6 Developer's Tutorial for the CSM 'l'estbe,t Architecture Revised 10/13/1988

The Data Structures The Element Data

3.5 The Element Data

The most vol.minous data are that pertaining to the boundary el,,ments, since typ-

ically there will be many elements per segme,t. The information is collected in file ele-

ment. inc , which reads

This is the file element.inc

common /ELEMENT DATA/

$ numbe, xme. yme, hleng, sinbet, cosbet, kod, c. b. r. x

integer MAXELM, MAXEQS
parameter (MAXELM=IO0) ! Maximum no. of boundary elements
parameter (MAXEqS=2*MAXELM) ! Maximum no. of discrete equations
integer numbe ' Total number of boundary elements
real xme(MAXELM) I X-coor of element midpoint

real yme(MAXELM) i Y-coor of element midpoint

real hleng(MAXELM) ! Half length of element
real sinbet(MAXELM) ! Sine of (element,x) angle
real cosbet(MAXELM) ! Cosine ibid.

integer kod(MAXELM) ! Elem BC code (copies seg code)

real b(MAXEQS) ! Prescribed boundary values
real c(MAXEQS,MAXEQS) ! Influence coefficient matrix

real r(MAXEQS) ! Forcing (RHS) vector
real x(MAXEQS) ! Solution vector

The elements arrays such as xme, yme, etc are parametrized in terms of the maximum

number of elements MAXELM.

This block also contains arrays used to set up and solve the IIEM equation system,

namely c, r, b and x. These are parameterized in terms of the total number of equations

MAXEQS, which of course is lwice MAXELM.

Now things gel. a little more complicated. All these data couhl be stored in one dataset

with several records, b,t it is better to ,sea more functional design as in §3.1. St,, the data

in the database are organized accordinglo where it is generated. All the actual element

data are computed in the BUILD subrouti,m, so the first dataset of this group is nan}ed

EI.EMEIIT with records named I_UMBE. XME, YME, tiLEIIG. SI[IBET. COSBET. KOD, and B

that hold the integer number numbe, and the one-dimensional arrays xme, yme, hleng.

sinbet, cosbet, kod, and b. These data are analogous to the element stiffness data in

a typical finite element code. ttowever, for boundary elements there are no individual

element stiffnesses, only a global system coefficient matrix. The element data just contain

the information needed to compute the global coefficient matrix.

The data for the arrays c and r are created in the GEI_ERATEsubroutine. However, in

general the system matrix, analogous to a global stiffness matrix in a finite element, code,

is computed in one subroutine, such as an assembler, and tim right-hand-side, the forcing

function, is computed in another subroutine. Thus, two datasets are added to the database

for these data. The first, dataset is named COEFF with a record named C that contains the

data for the coefficient matrix, c. The second dataset is named RHS with a record named

R that contains the one-dimensional array r.

Revised 10/13/1988 Developer's Tutorial fi,r the (_SIM Testbed Architecture 3- 7

The Element Data The Data Structures

The final dataset for this group of data is for the solution vector, x. This one-

dimensional array is computed by SOLVE, very similarly to a typical finite element code.

So, we name the dataset SOLUTION with a named record X to archive the solution vector

X.

In summary, we have defined four datasets with their associated records as:

Dataset- ELEMENT

Records- NUMBE

XME

YME

HLENG

SINBET

COSBET

KOD

B

Dataset- COEFF

Record - C

Data.set- RHS

Record - R

and

Dataset- SOLUTION

Record - X

3- 8 Developer's Tutorial for the CSM Testbed Architecture Revised 10/13/1988

Tile Data Structures The Field Location l)ata

3.6 The Field Location Data

This block of data pertains to the Iota|ion of rich| poi.ls at which stressor and dis-

placements are to be calculated once the boundary solution is obtained. The program

allows these locations to |)(, specified as equally spaced points along straight lines defined

by the user. lip to MhXLII,! (100 in tile version below) liues ca, be defi.ed. The locations

are specified by giving tile x and y coordinates of the first and last points on the line,

and the number of intermediate points (_"0) to be "collocated" between the first and last

points. An isolated point may be specified by making the first and last point coincide.

All of this information is gathered in the. file output.inc :
.............................

This is the file output.inc

common /OUTPUT DATA/

$ lindef, nintop, xfirst, yfirst, xlast, ylast

integer MAXLIH

parameter (MAXLIII=IO0)

integer lindef(MAXLII]) ! Line definition tag

integer nintop(MAXLI}l) ! No. of intermediate points on line

real xfirst(MAXLI]I) ! X-coor of first point on line

real yfirst(MAXLII1) ! Y-coos of first point on line

real xlast(MAXLIN) ! X-coor of last point on line

real ylast(MAXLIN) ! Y-coor of last point on line

This group of data are similar to other groups of one-dimensional arrays, such as the

segment data in §3.1. So, we use a dataset named FIELD with named records LIHDEF,

IIIIlTOP. XFIRST. YFIRST, XLAST, and YLAST to store the one-dimensional arrays lin-

def, nintop, xfirst, yfirst, xlast, and ylast. In outline form this database data

structure is:

Dataset- FIELD

Records- LItlDEF

NINTOP

XFIRST

YFIRST

XLAST

YLAST

Revised 10/13/1988 l)cvelop(,r's Tutorial for the (;SM Testbed Architecture 3- 9

The Database Data The Data Structures

3.7 The Database Data

The DT]EM2 [Processor subroutines that comrnunicate wil, h 11., CAL-DTIM need to

know the logical device index (idi) of the library (database) being used; see [2] §2.4 and

the description of the DB_0PEll subroutine in §6. So, this globally used information is kept

in the labelled common block DATABASE. There is no dataset and record associated with

lhese data because it is not archival data; it is temporary --- only used for the run at hand.

This information is gathered in lhe file database.in¢:

!: This is the file database.inc

common /DATABASE/ Idi

integer Idi ! GAL Library logical device index

This concludes the design of the important data structures [orthe inl,erna]data repre-

sentation and the globaldatabase. Nexl we pass io the design of a command set to control

logicof DBEM2.

q- 10 Developer's Tutorial for" the CSM T(,stt,,,(i Architecture Revised 10/13/1988

The Commands

4. The Commands

Ilaving described the data and the (tatasets for tile database, we have now to d,,slgn

an appropriate set of commands to perform operations on the data and the database. The

writers found it. convenient to choose commands headed by the following action verbs:

CLEAR

OPEI'I

DEFINE

BUILD

GENERATE

SOLVE

PRII,IT

CLOSE

STOP

Why these particular commands? Parlly from a preliminary study of the problem, partly

from wishes to get several command formats so thal. the use of many of the entry points

described in [! I would be illustrated.

It turns out that the last wish (of illustrating various command formats) makes the

command set a bit inconsistent, but that should not cause a great deal of concern. After

all, it's only an example.

Another Processor developer faced with the same problem (even a simple problem like

this one) may in fact come up with a radically different set of commaJl(is that accomplishes

virtually the same thing.

We next describe brietty what the commands do.

CLEAR Initializes all Tables maintained by the t'ro(essor and sets some default
values.

0PEll Opens a (;AL-I)BM Library to store problem data and/or load previ-

ously stored problem data.

DEFIHE Enters data that. are used in the definition of the problem to be solved.

The DEFIIIE verb will be followed t)y another keyword that makes the

data more specific.

BUILD Indicates lhat the problem-definition phase is conll)lete, and calls for

the generation of the discrete governing equations.

GEIIERATE "l'rigRer_ tho as_o_rlhly t_f tho itlfl,,onc_, rc)_,fFwiet)t ,t)atrix and fi>rcinl_

vector.

SOLVE Triggers tim soluti()ll fi)r the unknown boundary varial)les.

PRII_T t'rints (lisl,lacements and stresses at bottndary points and at specified

field points.

CLOSE Closes the open (;AL-I)BM l,ibrary.

STOP Closes all open GAL-DBM I, ibraries and terminates execution of the

processor.

Revised 10/14/1988 l)eveloper's Tutorial for the C,qM Testbed Architecture 4- 1

The Commands

TFtI_ PAGI z, I,I;]F'I ' tll.,,*t NI'_ INTI_]NTIONAI,I.,Y.

4- 2 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Starting at the Top

5. Starting at the Top

We are going to build Ill,, i)r(wessor l_,xe('utise "to I) down". For Ihis relal ively sm_lll

Processor it probably (lo_.sn t make much (lifferen(e whether we do it top-down, i)ottom-up

or inside-out. But adhering to this approach makes life easier for bigger Processors.

Following the top-down approach we must do the main program first. Here it is:

Computer Program for the Two-Dimensional Direct

Boundary Element Method (DBEM2)

Adapted from program TWOBI in the book Boundary Element Methods

Methods in Solid Mechanics by S. L. Crouch and A. M. Starfield,

G. Allen & Unwln, London, 1983, by Philip Underwood and

C. A. Felippa to exemplify conversion to interactive operation

via CLIP and the use of a global database GAL-DBM.

program DBEM2

implicit none

character*8 CCLVAL,

integer ICLTYP

verb

I000 call CLREAD (' DBEM2> ',

$ ' CLEAR, OPEl_, DEFIIIE, BUILD [/LOAD I STORE]a& '//

$ 'GENERATE [/LOAD] STORE], SOLVE [/LOAD I STORE]&& '//

$ 'PRIIIT, CLOSE, STOP')

if (ICLTYP(1) .le. O) then

print *, '*** Commands must begin with keyword'

else

verb = CCLVAL (i)

call DO COMMAND (verb)

end if

go to I000

end

In I)BI_;M2 the top-level command must start with an action verl), hence the error

check. The prompt is the name of the Processor: this is a convention followed in the NICE

system.

The }op level of all Prcwessors I¢)oks very much tho sarHe, regardless of the eOrnl)lexil,y

of what lies underneath.]'his is not surprising if you hole that all Processors fit the "do

forever" model illustrated in [1] §(_'.2.

The next level is DO COMMAIID, which is again a "case" statement that branches on the

action verb:

Revised 10/14/1988 l)eveloper's Tutorial for the CSM Testbed Architecture 5- 1

Starting at the Top

Top level command interpreter for DBEM2

subroutine DO_COMMAIID (verb)

implicit none

character key_8, qual*8, verb*(_)

integer nq

logical C_ATCH

key = verb

if (CMATCH (key, 'B^UILD')) then

qual = ' '

call CLOADQ (' ', -1, qual, O, nq)

if (nq .eq. I) then

call UPCASE (qual)

if (qual(l:l) .eq. 'L') then

qual = 'LOAD'

else if (qual(l:l) .eq. 'S') then

qual = 'STORE'

else

print*, ' Illegal qualifier: ', qual, ' for BUILD."

print*, ' BUILD not performed.'

return

end if

end if

call BUILD (qual)

else if (C_ATCH (key, 'CLE^AR')) then

call CLEAR

else if (CNATCH (key, 'CLO^SE')) then

call DB_CLOSE

else if (CMATCH (key, 'D^EFIIIE')) then

call DEFI)IE

else if (CMATCH (key, 'G^E)IERATE')) then

qual = ' '

call CLOADQ (' ', -I, qual, O, nq)

if (nq .eq. 1) then

call UPCASE (qual)

if (qual(l:l) .eq. 'L °) then

qual = 'LOAD'

else if (qual(l:l) .eq. 'S') then

qual = 'STORE'

else

print*, ' Illegal qualifier: ', qual, ' for GE]IERATE.'

print*, ' GE}IERATE not performed.'

return

end if

5- 2 Developer's Tutorial for tile CSM Test bed Archite(:t,lre Revised 10/14/1988

Starting at the Top

end if

call GEHERATE (qual)

else if (CMATCH (key, 'H_ELP')) then

call HELP

else if (CMATCH (key. 'O^PE]I')) then

call DB_OPEN

else if (CMATCH (key, 'P^RI_[T')) then

call PRINT

else if (CMATCH (key, 'SO^LVE')) then

qual = ' '

call CLOADQ (' '. -I, qual, O, nq)

if (nq .eq. 1) then

call UPCASE (qual)

if (qual(l:l) .eq.

qual = 'LOAD'

else if (qual(l:l)

qual = 'STOKE'

else

print*,

print*,

return

end if

end if

call SOLVE (qual)

else if (CMATCH (key, 'ST^OP'))

call STOP

else

print *, '***

end if

return

end

'L') then

.eq. 'S') then

' Illegal qualifier: ', qual,

' SOLVE not performed.'

then

Illegal or ambiguous verb: ', key

' for SOLVE.'

Note t hal the reels are <)r(lere(I so that keywords are alphabetically sorted. '['his makes

it easier to insert new keywords without forgetting to expand roots <)f existing ones. Ii'or

example, suppose you want to insert a PLOT (:omman(t for your favorite graphic device;

inserting it just before the test. for PRINT makes it easy to spot that the root for the latter

has to be expanded to PR.

For the keywords, BUILD. GEI.IERATE, and SOLVE we are also looking for a possible

qualifier. Th¢, existence of this qualifier is deWrmined I,y a(all to CLOADQ; see Ill §_.3.

If a qualifier is found, then we check to see if the value is either LOAD or STORE. The

LOAD qualifier signifies thai the data are to be loaded from the database instead of being

computed. The STORE qualifier signifies that the data ar_, l o be stored in the database

after it has been computed.

UPCASE is a CSM Teethed (NICE) architectural utility that converts its argument to

u p perc ase.

Revised 10/1,1/1988 i)eveloper s Tutorial for the (., M Testbed Architecture 5- 3

... Starting at the Top

THIS PAGE LEFT BLANK INTENTIONALLY.

5- ,1 Developer's Tutorial for the CSN! Testb[,d Archit[,ctur_, Revised 10/14/1988

Starting and Stopping

e Starting and Stopping

The CLEAR suhroutine is (luito sir.l, le, as it only has to zero out the model deftnilion

tables:

÷

1500

2OOO

C

Initialize tables, set default values

subroutine CLEAR

implicit
include

include

include

include

include

include

integer

none

'segment.inc'
'element.inc'

'material.inc'

'symmetry.inc'

'prestress.inc'

'output.inc'

i

do 1500 i = I,MAXSEG

segdef (i) = 0

.'<beg(i) = 0.0

xend(i) = 0.0

ybeg (i) = 0.0

yend (i) = 0.0

numel(i) = 0

kode (i) = 0

bvs (i) = 0.0

bvn(i) = 0.0

continue

= I_MAXL I'l

--= O"

d_ 2000 i

lindef(i)

Continue,

numbe = 0

ksym =

em

•pr =
sxxO =

syyO =

sxyO : -

print i.

return

end

.

11o
• 0:0

0,0

0,0

0..0

'Tables initialized'

The function of t,Jw arrays is ext,laim'(l it l _3.

Revised 10/14/1988 Developer's Tutorial for tile CSNI le. tbed Architecture 6- 1

Starting and Stopping

Next, you may wish to OPEN a GAL Library (database) to use for loading previously

computed data and/or to store data computed during a run. (CLEhR does 11+)I,have to be

used before OPEN and vice versa.) Tile OPEH command has the form

OPEN/[Qualifier] LIB = library_name

The brackets, [], around the Qualifier signifythat the Qualifier isoptional. The

Qualifier is to describe the characteristicsof tilel,ibraryto be opened. The accepted

values are _IEW. OLD, ROLD, and SCR. If no qualifierisgiven the value defaults to COLD.

The meaning of these values isgiven in [2I,Table 6.5. Most applicationsmay ignore the

qualifier.

The name of the filethai.isthe GAL l,ibrary(library_name) must, be entered. This

is a valid filename for the computer system you are using. On a UNIX system ifyou

,tsea pathname that contains /'s the filename must be enclosed in singlequotes (e.g.,

'/usr/king/kong/new/york'). Otherwise CLIP willtry to interpretthe directoriesand files

as qualifiers.

Experienced NICE users pick filenames for (;AI, l,ibrariesthat are descriptiveof the

problem and usually use the fileextension gal. This way you can easilylindthe database

filesand the name should remind you of the problem.

The OPEN comtnand produces a callto the DB_OPEI_ subroutine:

Open GAL Library (Database)

subroutine DB_OPEH

implicit none
include 'database.inc'

character*80 CCLVAL

character*81 libnam

character*t1 key

character*4 qual

integer ICLNIT, ICLSEK.

integer nq

ICLTYP. LENETB. LMOPEI]

if (ICLNIT () .it. 3) then

call CLREAD (' OPEII: Enter

$ ' .)

end if

[/QUAL] LIB = LIB_IIAME > '.

libnam = ' '

key = 'COLD/GAL82 '

call CLOADQ (' ', -I,

if (nq .eq. I) then

call UPCASE (qual)

qual, O, nq)

6- 2 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Starting and Stopping

if (qual(l:l) .eq. 'H') key =

if (qual(1:l) .eq. '0') key =

if (qual(l:l) .eq. 'R') key =

if (qual(l:l) .eq. 'S') key =

end if

if (ICLSEK (0,

if (ICLTYP

if (libnam

print*,

$ ' Cannot

print*,

return

end if

else

print*,

return

end if

'NEW/GAL82 '

'OLD/GAL82 '

'ROLD/GAL82 '

'SCR/GAL82 '

'L^IB ') .ne. 0) then

(0) .gt. 0) libnam = CCLVAL(O)//'

.eq. ' ') then

find LIB_IIAME. Format is

' 11o library opened.'

' Cannot find keyword LIB'

idi = LMOPEH (key, O, libnam, O,

if (idi .eq. 0) then

print*, ' Unable to open library:

else

call GMSIGII ('DBEM2')

end if

LIB = LIB_HAf_IE.'

l'Io library opened.'

return

end

500)

', libnam(l:LEHETB(libnam))

The call to CLREAD, [1], _2.7, at the beginning of DB_0PEH prompts the user for needed

data if the minimum number of items (i.e., the function ICLHIT, [I], _i9.5) needed to carry

out the OPEl[command is not found.

In DB 0PEli the call LIq0PEI! iv ,ised to open the (',AI, l.ibrary for reading (loading)

;_nd/or writing (storing) data. The subroulinc GMOPEII can also be used, but for this

begillrling example il is a liltle complex. The use of LM0PEII here easily lets us use one

database for one problem. If multiple databases arc required then GMOPEN is the one to

use. A description of GI,IOPEII and LMOPEII can be found in [2}, ._6.,t.

If the l,ibrary is successfully opened (a non-zero ldi is obtained) we call GMSIGH with

lhe ,at,e of lhe Processor as lhe arf4uuw,l. This places the Processor ,ame in the Table

of Contents ('1"()(.') data for lhe database. This is a recommended procedure; see [2], §10.8.

The DB_CLOSE suhroutine carries ou_ the aclio, requested by the CLOSE corn,la,d.

This command is used to close the currently active (;Ai, l,ibrary. This command is used

if you were finished with some problem then wished to work on another problem that

required another GAI_ l,ibrary. So yoll CLOSE the old one before OPEHing the new file

containing the other (;AL Library.

The DB_CLOSE subroutine is quite simple:

Revised 10/14/1988 l)eveloper's Tutorial for the CSM Testbed Architecture 6- 3

Starting and Stopping

_ Close GAL Libraries (Databases)

subroutine DB_CLOSE

implicit none

include 'database.in¢'

call GMCLOS (idi, O, i00)

return

end
...

rI'tle only call is to GMCLOS I21, ,_6.2, which closes the active liblary associated with

ldi. For more advanced applications with tllUltiple libraries ill use, a specific ldi may also

t)e an input item. So a specific library could 5(, closed after it is no longer needed.

Relatively simple is the STOP subroutiue:

Terminate the run

subroutine STOP

call GMCLOS (O. O, 100)

prints:. ' Hope you enjoyed the ride!'

call CLPUT ('zstop ')

end

The call to GMCLOS insures that any (;Al_ l_ibraries that may be open are properly

<'losed, so that no dataSase data are lost. The call to CLPUT sends the +stop directive to

(:[,I}). This is the preferre(t way to exit a NICE Processor, because it allows you to run the

Processor in network mode. Itowever, if the netwotk mode (Sul)erCI_lP) is uot available

)T\'our" computer, replace this line with lhe FOI('rRAN stop slatemenl.

A descril>lioH of GMCLOS caT_ be found in [2i, §6.2. A <tescril>_ ion of CLPUT can be found

i_ i li, _2.4. At_<l a description of _+_stop can I)e fou,_,l in !3!, ._5._}.1.

Now oTI to DEFIIIE to defi_le _he proi)l,'rll t(, solve.

6- ,l Developer's Tutorial for the (;SN,1 Teslhed ._.r('hitecture I¢evise(I 1(I/14/1988

I)efining the t'rol)lenl

7. Defining the Problem

The DEFIIIE command inlroduces prol)h, nl-definition data. It is convenient to break

u I) the definition into several types of data, which correspond closely to the data-structure

grouping discussed in §3. Each type is identified by a keyword that immediately follows

DEFINE. The keywords are:

SEGME_ITS

ELEMENTS

BOUIIDARY COIIDITI01IS

SYMMETRY CO[IDITIOIlS

MATERIAL

PRESTRESS

FIELD

_ubroutineDEFINE, unlike CLEAR, 0PEII,

WOI'(] :

:: Interpret DEFIIIE command

Specifies the sl.raight-line segments l,hat make up the boundary

of the problem to be solved.

Specifies into how man), boundary elements each segment will

be divided.

Specifies the I)otlndary conditions lhat al,ply to each boundary

seglll(,lll,

Specifies the syntmelr.v conditions, if any, that apply to the

prol)lem 1() I)e solved.

Specifies constitutive properties of lhe material.

Specifes prestress dala in the form of initial stress comt)onents.

Specifies the location of lield points at which displacemenl, and

stresses are Io he evaluated and printed later.

CLOSE or STOP, t)ran('hes as per the second key-

subroutine DEFINE

implicit none

character key*8,

integer ICLTYP

logical CMATCH

CCLVAL_8

if (ICLTYP(2) .le. O) then

print _, '':: _ 1Io heyword after

return

end if

DEFIIlE'

key = CCLVAL(2)

if (CMATCH (key, 'B^OUIID')) then

call DEFIIIE BOU}IDARY_COIIDITIOIIS

else if (CMATCH (key, 'E^LEMEIITS')) then

call DEFIIIE ELEMEIITS

else if (CMATCH (key. 'F^IELD')) then

call DEFINE_FIELD_LOCATIOHS

else if (CMATCH (key, 'bI^ATERIAL')) then

call DEFIIIE_MATERIAL

else if (CMATCH (key, 'P^RESTRESS')) then

Revised 10/14/1988 Developer's Tulorial for the CSM Testbed Architecture 7-1

Defining the Problem

call DEFINE_PRESTRESS

else if (CMATCH (key. 'SE^GMEHTS')) then

call DEFINE_SEGMEIITS

else if (CMATCH (key, 'SY^MMETRY')) then

call DEFINE_SYMMETRY CONDITIONS

else

print *.

$
end if

return

end

'*** Illegal or ambiguous keyword
' after DEFIIIE'

, key.

The program begins checking whether a keyword actually follows DEFINE. If so it

compares them in tile usual matter and ('alls al)t)ropriate input subroutines. These are

described next.

7- 2 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Defining the Problem A l)igression: Tile Basics of Using GAL-1)BM

7.1 A Digression: The Basics of Using GAL-DBM

Because the basic mechanics of writing (storing) a,d reading (loading) data are very

similar throughout all the subroutbles that load and store data, these basics are presented

before we present the details of each subroutine. Thus, ill tile discussion we can focus on

the importan! details within the basic o,tli,e presented here.

7.1.1 Storing GAL Data

The first step is t,) 0PEN the (',AL Library that is to contain the data to be stor('(t; see

_6. if tile I,ibrary is already open,)lolhing needs to be don,'.

Next. each dataset needs to be installed in the l,ibrary. This is easily clone with a call

to (;MPUN'F, [2], §7.11. in this tl,torial example the dataset is always installed (ev_,n if

it already exists). So, if you store lhe same ,lamed data more than once during the same

run, the old dataset will be marked as deleted and a new dataset of the same name will

appear in the Library. In general this is a safe practice, because old data are still there

until the Library is packed. Thus, old data can be retrieved by enabling a deleted dataset.

(See *pack [3!. §,t8.1 and *enable 13], §2,1.1.)

Then h)r each record of data we wish to store we must construct the record name,

followed by writing the data. The record name (rname is used in the code) is constructed

by subroutine GMCORII [2], _i().6. The data are written with a call to GMPUTN [2], §9.9.

In lhis tutorial example we have chosen the record key (nalne) and its associated

record cycles (record group), I2], _5.1, to correspond to the array name and array indices

used in the dimensioned arrays i, lhe code. For exampl(', if we have a one-dimensional

array named number and we have used number(I) through number(12), we construct the

record name to be number.l:12. Thus, number(3) in the code equals number.3 in the

database. Here we have co,_tructed a r(,cord gr(u,p containi,g 12 records with each record

contai,ing on_ number. If yo, h)ok at th(, recor(I attril)utcs (use tile *rat directly(' t31,

_49.4), you will see the record number has ;l low cycle :- l, a high cycle _- 12, and a logical

size-:: 1 (l mlrnber).

Somewhat more complex isa two-dinmnsio,alarray (a matrix). In this tutorial there

is only one matrix, ¢, the system coefficient matrix. This matrix is square, n by n, so

we choose tile record name to be c. 1 :n. We have as many records as we have columns

in the matrix. Thus, each record has a logical size eqnal t,o n, i.e., each record contains

the n numbers for the (:olul,, it represents. For example, c. 5 contains the n numbers for

(:olumn 5 of the matrix, c. See §8.0 for the iml)h',lentation details.

The simpliest case is the record that conlai,s o,ly one value. For this case the record

Ha.le does nol have (o coniain any gro,p ('v(h, llllml)ers; s(,e [2], _5.1.

Revised I(}/14/1988 Developer's T.1orial for the CSNI Testbed Architecture 7- 3

A Digression: The Basics of Using GAI,-1)BM lh,fining the Problem

Finally, after tile data for a dataset are stored ill the GAI, Library, the GAL-DBM

buffers should be flushed. This insures that all the data are actually written to the GAL

Library (file). Thus, if the next thing that happens causes your run to fail, you still have

all the data properly stored up to that point.

In summary, to store data in an open GAL Library the following steps are needed:

1) Install tile dataset GNPUI'IT

2) Then for each record repeal these steps

a) Construct the record natne GMCORII

b) Store the data GMPUTII

3) Finish with a buffer flush GMFLUB

7.1.2 Loading GAL Data

Again, the first step is to OPEI,I the GAL Library that contains the data to be read;

see §6. If the Library is already open, nothing nee,Is to be done.

Next, for each dataset to be loaded the dataset sequence number must be determined

for use in subsequent calls to other GAL subroutines, f;iven the dataset name the integer

function LMFIHD returns the datasel sequence number 12], §7.5.

Then for each record name in the dataset we must determine the record group cycles,

so all the data in the records can be loaded. The low and high record group cycles (ilow

and ±high, respectively) are returned by the subroutine (;MCEG¥ 12], _9.3.

Next, the record name is constructed so that all the records are loaded in one read

operali()n. The record name is constructed by a call to GMCORI'If2], §10.6.

Finally, the data are loaded from the GAL Library into a single variable or an array.

The call to GMGETI] h)ads numeric data [2], ,_9.5.

In summary, we have the following simple outline for loading data:

1) Find dataset sequence number - LMFIIID

2) Then for each record repeal these steps

a) Get record cycle information -- GMGECY

b) Construct record name GMCORI'!

c) Load the data -GMGETtl

This is about as simple as it can be done for arrays, llowever, if only a single va.lue

record has been stored, it can be loaded with only steps 1 and 2c. The record name does

not need to contain the cycle number(s) [21, fiS. I.

7- 4 Developer's Tutorial for the CSM 'Festbed Architecture Revised 10/14/1988

Defining the Problem A I)igression: The I_asics of Using G AI,-I)BM

A sophisticated Processor should do some more error checking. The sophisticated

reader shouhl be aware of the test for an error condition, LMERCD [2], §14.5. Calls to

LMERCl) are typically made after all reads (GM(]ETx [2], §9.5) and many times after all

writes ((]MPUTx I2], §9.9). Also, the subroutine (]M(;ETx returns two arguments, n and ra,

that contain inh)rmation about how much data have been read. These arguments can also

be used for error (:hecking.

In the code that follows in §7.2, the L0hD and STORE operations are code inline in

the applicable subroutine. A higher level of abstraction can be used by writing cover

subroutines that load and store data. These subroutines then call the appropriate GAL

subroutines to load and store. This results in cleaner code, i.e., all database I/O is done

in two subroutines; so a change of databases is easily accommodated. However, you do

pay the price of a modest loss of eih('iency l)ecause of the additional subroutine calls. The

inline code is used here for tutorial purposes. Also fi)r a small Processor, the additional

abstraction is not really needed.

Now, lets look at the CLIP and GAL calls required to define the problcm, eith_r by

interactive]y entering the data through commands then storing it, or by loading previously

stored data.

Revised 10/'1,1/1988 l)evelop_,r's Tutorial for the (:SM Testbed Architecture 7- 5

Defining Segments l)efining the Problem

7.2 Defining Segments

The DEFIHE SEGMEHT command introduce._ a series ofscgrnent-definition commands

which are expected to have the form

beq t, eq end ,'nd
SEGMEIIT = i BEGIII = _ ,y " END = x, ,y,
[LOAD I STORE]

beg
where x ,Y_eg are the x,y coordinates of the starting point of the ith segment, and

.end end
, ,Yi are the x,y coordinates of the ending point. The segment list is terminated by an

EIID command that takes the control back lo the main program. In listing the coortlinates,

the following boundary traversal convention must be observed: a closed contour is traversed

in the counterclockwise sense if the region of interest is outside the contour (a cavity

problem), and in the clockwise sense if the region of interest is inside the contour (a finite

body problem); see Figure 2-1, §2.

In the CLAMP metalanguage, lhe I says that one may specify either LOAD or STORE,

but not both simultaneously. The specifications are shown in brackets, meaning that they

may be omitted.

For example, to define and store a d-segment t)oundary that encloses a square region

whose corner points are (O.O), (4.0), (4.4) and (O,4), and which constitutes the region

of interest, you say

DEFIIIE SEGMENTS

SEG=I BEGIII=O,O EHD=O,4

SEG=2 BEGIH=O,4 END=4,4

SEG=3 BEGII,]=4,4 END=4,0

SEG=4 BEGII'I=4,0 E}ID=O,O

STORE

EIID

(Segments may be actually defined in any order; there is also no need to number them

set O.'n(ially.)

The commands that enter the segment data, plus the LOAD, STORE and EIID comtnarld,

are call subordinate commands, because they can appear if and only if the command DE-

FIIIE SEGMEIlT has i)een entered. The DEFIIIE SEGMEIIT comnmn(I, which introduces the

s11l)or(linate commands, is said to be the heoder command (i(also goes l)y the names master

command, parent comma))d, etc.).

The STORE command is optional; you (lon'l have to store the da(a in the (',A I, Library,

unless you wish to keep it for later use.

If you have already defined the segme)tls anti st_red the da)a. you ('an use ihe following

comnmnd sequence (o load the segment data from the databas(,.

7- 6 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Defining the l)roblem I)efini.g Seg.lenl, s

DEFINE SEGMENTS

LOAD

END

The processing of the segment-definition commands is carried out within subroutine

DEFINE SEGMENTS:

Read segment-definition data

1OOO

subroutine DEFINE_SEGMENTS

implicit

include

include

character*8

character_20

integer

integer

real

logical

none

'database.inc'

'segment.inc'

key, CCLVAL

rname

iseg, n, mseg, ICLTYP, ICLVAL, ICLSEK

idsn, LMFIHD, ilow, ihigh, nrec

xy(2)

CMATCH

call CLREAD (' Segment data> ',

' Enter SEG=iseg BEG=xbeg,ybeg END=xend,yend&_'//

' or LOAD or STORE_&'//

'Terminate with END')

if (ICLTYP(1) .le. O) then

print *, '*** Command must begin with SEG or END'

go to i000

end if

key = CCLVAL(1)

if (CMATCH (key, 'E^ND')) then

return

else if (CMATCH (key, 'S'EGMEIIT')) then

iseg = ICLVAL(2)

if (iseg .le. 0 .or. iseg .gt. MAXSEG) then

print *, '*_'* Segment number', iseg, ' out of range'

go to I000

end if

segdef(iseg) = 1

if (numel(iseg) .le. O) numel(iseg) = I

if (ICLSEK(3, 'B^EGIII ') .ne. O) then

call CLVALF (' ', 2, xy, n)

if (n .ge. 1) xbeg(iseg) = xy(1)

if (n .ge. 2) ybeg(iseg) : :.:y(2)

end if

if (ICLSEK(3, 'E^IID ') .ne. O) then

call CLVALF (' ', 2, xy, n)

Revised 10/14/1988 Developer's Tutorial for th(_ (., M 'l'estb(;d Architecture 7 7

l)efini.g Segments l)efi.ing tile Problem

C

C

if (n .ge. I) xend(iseg) = xy(1)

if (n .ge. 2) yend(iseg) = xy(2)

end if

else if (CMATCH (key. 'L^SAD')) then

--- find dataset

idsn = LMFIND (idi, 'SEGMENT ', 100)

if (idsn .eq. 0) then

print*, ' Cannot find SEGMENT dataset; nothing LOADed.'

go to i000

end if

--- get record name cycles, construct record name a read data

n = MAXSEG

call GMGECY (' , idi idsn, 'SEGDEF '. nrec, ilow.

ihigh. 220)

call GMCORN (rname, 'SEGDEF ', ilow, ihigh)

call GMGETN ('R/L', Idi. idsn, rname, 'I segdef,

n, O, O, O, 200)

n = MAXSEG

call GMGECY (' . idi idsn, 'NUMEL ', nrec, ilow,

ihigh, 220)

call GMCORN (rname. 'NUMEL ', ilow, ihigh)

call GMGETN ('R/L', idi, idsn, rname 'I numel,

n, O, O. O, 300)

n = MAXSEG

call GMGECY (' , idi idsn, 'XBEG ' nrec, ilow.

ihigh. 220)

call GMCORN (rname, 'XBEG ', ilow, ihigh)

call GMGETN ('R/L', idi. idsn. rname 'S xbeg.

n, O, O, O, 400)

n = MAXSEG

call GMGECY (, idi idsn, 'YBEG ' nrec, ilow,

ihigh, 220)

call GMCORII (rname, 'YBEG '. ilow, ihigh)

call GMGETN ('R/L', idi, idsn, rname 'S ybeg,

n, O, O, O, 500)

n = MAXSEG

call GMGECY (' , Idi idsn, 'XEND ' nrec, ilow,

ihigh, 220)

call GMCORN (rname, 'XE}iD ', ilow, ihigh)

call GMGET|| ('R/L', idi, idsn, rname 'S xend,

n, O, O, O, 600)

n = MAXSEG

call GMGECY (' , idi idsn. 'YEND ' nrec. ilow,

ihigh, 220)

call GMCORH (rname, 'YEIID '. ilow. ihigh)

call GMGETH ('R/L'. idi. idsn, rname 'S yend,

n, O, O, O. 700)

else if (CMATCH (kay, 'S'TORE')) then

7- 8 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Defining the Problem Defining Segments

C

C

100

200

--- install dataset

call GMPUNT (Idi, 'SEGMEHT ', idsn, 16, I000)

--- determine largest value of segdef

do i00 n=MAXSEG,I,-I

if (segdef(n) .ne. 0) then

mseg = n

go to 200
end if

continue

continue

--- construct record name & write data

call GMCORN (rname 'SEGDEF ', I, mseg)

call GMPUTN ('W', Idi idsn, rname, I'

0 O. O, ii00)

call GMCORN (rname 'I_UMEL ', I, mseg)

call GMPUT]_ ('W', idi idsn, rname, I'

0 O, O, 1200)

call GMCORI_ (rname 'XBEG ', 1, mseg)

call GMPUTN ('W', Idi idsn, rname, S'

0 O, O, 1300)

call GMCORH (rname 'YBEG ', I, mseg)

call GMPUTH ('W'. idi idsn, rname, S'

0 O. O, 1400)

call GMCOKN (rname 'XEIID ', I, mseg)

call GMPUTN ('W'. Idi idsn, rname, S'

0 O, O, 1500)

call GMCORI_ (rname 'YEtID ', 1, mseg)

call GMPUT[] ('W'. idi idsn, rname, S'

0 O, 0, 1600)

GMFLUB (Idi, O, 2000)call

else

print *, '*** Illegal keyword '

end if

go to tO00
end

, key.'

segdef, mseg,

numel, mseg.

xbeg. mseg.

ybeg, mseg,

xend, mseg,

yend, mseg,

in segment data'

Th(' stru(t ur(' of this subroutine is typit:al of those that handle subordinate commands.

A "do forever" conslru('lion is headed by a CLREAD call, and tim loop is escaped only when

an EIID comnmn(t is (h, tected. Notice the different prompt and verbose prompt input

argu rHei! Is.

This subroutine provides an example of the use of the "search for keyword" function

ICLSEK described in [I 1, ._5.2. A keyword nmtt:h is fo]]owed by a value pair retrieval through

the list-loading subroutine CLVALF (lescribed in Ill, §7.2.

Revised 10/21/1988 I)eveloper's Tutorial for the (;SM Tcstbed Architecture 7- 9

I)efiTling Segments Defining the Problem

Note the careful handling of the case in which less than two values appear after either

BEGIII or EI_D. This facilitates table editing. For exaTnple, the command

S=3 B=45.2

resets XBEG(3) to 45.2; nothing else changes.

To load the data the outline presented in §7.1.2 is followed exactly. Note that, the

variable n is set to MAXSEG before every call to GMGETtI. This insures that no more than

MAXSEG values are read into lhe arrays that are dimensioned to MAXSEG. The value of n

is reset after each call to GMGETN because n returns the actual number of values read. A

real production Processor would perform some data checking to make sure the number of

values read for each record are the same. Also, real professionals would use LNERCD [21,

§1,t.5, to check for various errors that may have occurred during the read.

To store the data that has been entered the outline presented in ._7.1.1 is followed

exactly. Note thai,, the high cycle for the records is determined by computing the largest

index of segdef that contains a non-zero value. Thus, when this data is read later the

number of segments defined is known from the high cycle number for the SEGMENT dataset

records.

7.2.1 Digression on Subordinate Commands

Why have we used subordinate commands rather than making the user type the

segment in the DEFIIIE command itself? Well, contrast the al)ove defiuition of the _quare

region with the following one:

DEFIHE SEGMEHT=I BEGIN=O.O EHD=4.0

DEFINE SEGMEHT=2 BEGIN=4.0 END=4,4

DEFII'IESEGMEI'IT=3 BEGIN=4,4 END=O,4

DEFII'IESEGME_IT=4 BEGIH=O,4 EHD=O.O

This is not too different in terms of typing effort, so the decision for adopting a one-

h,vel and a lwo-level structure in terms of number of keystrokes is marginal. But. note that

by going to a two-level scheme we have effectively separated the action of selecting what

to define, namely segments, from the actual definition by entering coordinate values. This

is a key aspect of ob3ect-oriented programmi_lg: firsl select, then operate. Let us make this

a command design principle:

[[Try to separate selection from operation]l

If you are entering commands from a keyl)oard perhai)s the advantages are not immediately

api)arent. But if you go to some form of inleraclive graphics input the advantages will be

evident when you try lo "cover" the commands lhrough message-sending techniques. The

user of such graphic system wilt then set, SEGMEI'ITS in a "model definition" menu, and by

pointing to it he or she is transported to another screen or window in which the process

of entering the segmenls is actually carried out.

7- 10 Developer's Tutorial for the CSM Testbed Architecture Revised 10/21/1988

Defining the Problem Defining Elements

7.3 Defining Elements

By defa, lt. each segtnent co,tai,s o,ly one bou,dary eler,e,t (see logic of DE-

FINE SEGMENT). To t)ul more eh,ments I)('I" segment you ._e the DEFINE ELEMENTS com-

mand, This introduces subordinate commall(ts of the form

SEG/EIIT = i ELEMEt'ITS = _

[LOAD I STORE]

where n is the number of boundary elements in the i th segment. The data is terminated

by an EIID command. For the square region used as an example, let's say we want 10 BEs

on segments 1 arm 3, 15 BEs on segme.ts 2 and 4, and slore this data:

DEFIIIE ELEME[/TS

SEG=I EL=tO ; SEG=3 EL=tO ; SEG=2 EL=f5 ; SEG=4 EL=IS

STORE ; EIID

which illustrates the fact that dal;_ may I)e entered in any order.

shown below actually allows a more genoral command form:

SEGMEIITS = it ik ELEMENTS = 7_l,...,,k

The implemen_ ation

so thai segmeui t 1 gets 7_I elemont_.._egme,t i 2 gets "2. and so on.

(an be abbreviated to

DEFII'IE ELENEUTS

SEG=I :4 EL=IO, 15,10,15

STORE ; EIID

The example at)eve

For this simple Processor, using a command like this is prot)ably overkill. It is implemented

in that fashion only to illus_ rate the [)ro('essing of variable leng;th integer lists via CLVALI

l!, 7.2:

Define number of (equally spaced) boundary elements per segment

subroutine DEF IIIE_ELElvlEIITS

implicit none

include 'database.inc'

include 'segment.inc'

characters4 key. CCLVAL
character*20 rname

integer i, iseg, n, nseg

integer iseglist(MAXSEG), numelist(NAXSEG)

integer ICLTYP, ICLSEK

integer idsn, LNFIJID, ilow, ihigh, nrec

real FCLVAL

logical CMATCH

Revised 10/14/1988 l)eveloper's Tulorial for the CSNI Testbed Architecture 7- 11

Defining Elements l)efining the Problem

lO00
$
$
$

+

2500

C

$

C

call CLREAD (' Element data> ',

' Enter SEG = il ... ik EL = nel nek&&'//

' or LOAD or STOR£&a'//

'Terminate wlth EIID')

if (ICLTYP(1) .le. O) then

print *, '*** Command must begin with keyword'

go to I000

end if

key = CCLVAL(1)

if (CMATCH (key, 'E^ND')) then

return

else if (CMATCH (key, 'S^EG')) then

call CLVALI (' ', -MAXSEG, isegllst, nseg)

if (ICLSEK(O,'E^LEM ') .eq. O) then

print *, '*** Keyword ELEMEHTS is missing"

go to I000

end if

call CLVALI (' ', -MAXSEG, numelist, n)

do 2500 i = l,nseg

iseg = iseglist(i)

if (iseg .le. 0 .or. iseg .st. MAXSEG) then

print *, '_*_, Segment number',iseg,' out of range'

else

numel(iseg) = max(numelist(i),l)

end if

continue

else if (CNATCH (key, 'L^OAD')) then

--- find dataset

idsn = LMFIND (idi, 'SEGNENT ', I00)

if (idsn .eq. 0) then

print _,, ' Cannot find SEGNEIIT dataset; nothing LOADed.'

go to i000

end if

--- get record name cycles, construct record name & read data

n = MAXSEG

call GNGECY (' ', idi, idsn, 'NUNEL ', nrec, ilow,

ihigh, 200)

call GMCORII (rname, 'IIUMEL ', ilow, ihigh)

call GNGETII ('R/L', idi, idsn, rname, 'I', numel,

n. O. O, O, 300)

else if (CMATCH (key, 'S^TflRE')) then

--- find dataset because this is an update of SEGNENT_NUMEL

idsn = LMFII|D (idi, 'SEG[4EHT ', 500)

if (idsn .eq. 0) then

print*, ' Cannot find SEGMEI,IT dataset; nothing STOREd.'

print*, ' Must DEFINE SEGMEI|Ts before DEFINing ELEMEIITs.'

/

7- 12 I)eveloper's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Defining the Problem Defining Elements

go to I000
end if

construct record name & write data

call OMGECY

call GMCORN

call GMPUTtI

call GMFLUB

else

print *. '***
end if

go to I000
end

(' ', Idi. idsn, 'NUMEL

ihigh. 200)

(rname, 'NUMEL '.

('W/U'. idi. idsn.

O, O, O, 1200)

(idi, O. 2000)

Illegal keyword

', nrec, ilow,

i, nrec)

rname, 'I'. numel, nrec.

', key,' in element data'

Here the data are loaded following the outline given in .ti7.1.2. However, note that,

the NUMEL data are also loaded under DEFI_IE SEGME_ITS, st) it is not necessary to reload

the data here. As stated above the DEFII/E ELEMEI_TS commam] is an overkill, st) we end

up with this strange construction. The first author recommends including the number

of element definitions under DEFItlE SEGME/ITS as a s,bordinate command that calls DE-

FINE ELEb_ENTS, then all segment data operations are encapsulated in the same place. See

§7.3.l below for the second author's opinion.

Thus, to store the data here we must |)e sure the SEGMEIlT dataset exists instead of

the usual install operation (the dataset is inslalled in the DEFIHE SEGMENTS code, _7.2). If

the dataset is found we proceed, but not ah)ng the standard pal h. First, since the SEGMENT

dataset anti the NUNIEL record already exist, we retrieve the record cycles by calling GMGEC¥

I2i, §9.3. Then, the record name is constructed with a call to GMCORll I2), §10.6. Finally,

note that, the op_code, the first argument, in GNIPUTN is set to write/update. That is, we

write over the existing data. See [2!, §9.9 for more information on the op_codes.

If you can't follow the code, don't worry. It is more adw_,ced than the typical input

routine in I)BEM2, so you can study it later.

7.3.1 Digro,_si(m: Simplifying (7ommands

Why didn't we allow element data lo be Sl)e('itied i. the sa.we comma,ds that define

the segmenl geomelrv? For example, we nliRhf have allowed commands such as

SEG = 13 BEG = -1.50.3.53 EIID = 14.81.6.22 ELEM = 5

The answer fits within another design principle:

Simplicily is an admirable general principle, but for our case something more specific

applies:

Revised 10/14/1988 l)eveloper's 'l'ulorial for the (:SM Testbed Architecture 7- 13

Defining Elements Defining tile Problem

I [DOn!t _|'X p_rsis_71t and _Joga_ile data iT_ the _(lm_ com__(_d J l

The terms "persistent" and "volatile" are used in a relative sense to denote degrees of

"changeability" of the data. For example, segment data are more persistent than element

data, since presumably you want to solve a problem whose geometry is dictated by external

requirements; typically by engineering considerations. On the other hand, the number of

elements per segment is a judgement decision: the program user attempts to get satisfac-

tory accuracy (more elements, more accuracy) with reasonable cost (more elements, more

computer time).

Frequently the number of elements is varied while keeping tile segm_,rlt data fixed;

this is called a convergence study. So there are_ good reasons to separate the commands

that define these two aspects.

7- 1,1 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Defining the Problem Defining Boundary Conditions

7.4 Defining Boundary Conditions

Each segment may be given a different boundary condition (BC) that inwdves any of

the following stress/displacement combinations:

BC Code

()

1

2

3

Prescribed boundary values

Shear stress o_ and normal stress an

Shear displacement u, and normal displacement It n

Shear displacement u_ and normal stress o,_

Shear stress a_ and normal displacement u,

These values are constant along the segment, st) they can be read on a segment-by-segment

basis. The stress values are understood to be resultants over tile segment.

(The "BC codes" are related to those used by Crouch and Starfield [4]. Using integer

codes is far from the best way to imt, lement readable software, but we shall follow their

convention.)

The BC data commands are introduced by a DEFINE BOUNDARY_CONDITIONS header

command (which may be abbreviated to just D B), and have the form

SEG-- i {ss -- o. I so -- ,,.} {NS-- o. [ND --
[LOAD I STORE]

terminated by an END command. Keyword SS means shear stress, SD shear displacement,

and so on.

In the CLAMP metalanguage, the I indicates that one may specify either a_ or u_,

but not both simultaneously, and similarly for an and u.. The specifications are shown in

braces, meaning that they may not be omitted.

If no BC is ever specified for segment i, that segment is assumed stress free (code 0

with or. --- o, = 0). If only a normal value is prescribed, a zero shear stress is assumed,

and so on.

The implementation of DEFINE_BOUNDARY follows.

Read boundary condition data for segments

C

subroutine DEF INE_BOUNDARY_CONDITIONS

implicit none
include 'database.inc'

include "segment.inc'

character*4 key, CCLVAL, word(2)

character*20 rname

integer iseg, n, nw, iloc(2)

integer ICLVAL, ICLSEK, ICLTYP

integer idsn, LMFIND, ilow, ihigh, nrec, mseg

Revised 10/20/1988 Developer's Tutorial for the CSM Testbed Architecture 7- 15

Defining Boundary Conditions Defining the Problem

logical
%

I000

$

$

$

CMATCH

call CLREAD (' Bound_cond data> ',

' Enter SEG=iseg {SS=sig_s I SD=u_s} {NS=sig_n I HD=u_n}'//

' or LOAD or STOREk&'//

'akTerminate with END')

if (ICLTYP(1) .le. O) then

print *, '*** Command must begin with keyword'

go to I000

end if

key = CCLVAL(1)

if (CMATCH (key, 'E'ND')) then
return

else if (CMATCH (key, 'S'EG')) then

iseg = ICLVAL(2)

if (iseg .le. 0 .or. iseg .gt. MAXSEG) then

print *, '**,;_Segment number', iseg, ' is out of range'

go to 1000
end if

call CLOADK ('L', -2, word, iloc, nw)

call BCVALUES (iseg, nw, word, iloc)

else if (CMATCH (key, 'L'DAD')) then
--- find dataset

idsn = LMFIND (Idi. 'BCVALUES ', I00)

if (idsn .eq. 0) then

print*, ' Cannot find BCVALUES dataset; nothing LOADed.'

go to i000
end if

--- get record name cycles, construct record name & read data
n = MAXSEG

call GMGECY (' ', idi, idsn, 'KODE ', nrec, ilow.

ihigh. 22O)

call GMCORN (rname, 'KODE '. ilow, ihigh)

call GMGETH ('R/L', idi, idsn, rname, 'I'. kode.

n, O. O, O, 200)

n = MAXSEG

call GMGECY (' '. idi. idsn. 'BVN ', nrec, ilow,

ihigh, 220)

call GMCORII (rname, 'BV[I ', ilow, ihigh)

call GMGETN ('R/L', ldi, idsn, rname, 'S', bvn,

n, O. O, O, 300)

n = MAXSEG

call GMGECY (' '. idi. idsn, 'BVS '. nrec. ilow,

ihigh, 220)

call GMCORN (rname, 'BVS ', ilow, ihigh)

call GMGETN ('R/L', Idi, idsn, rname, 'S', bvs,

n, O. O, O, 400)

7- 16 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Defining the Problem Defining Boundary Conditions

else if (CMATCH (key, 'S_TORE')) then

C --- install dataset

call GMPUNT (idi, 'BCVALUES ', idsn, 16, I000)

C --- determine largest index of data stored

do 100 n=MAXSEG,I,-I

if ((kode(n) .ne. O) .or. (bvn(n) .ne. 0.0)

$.or. (bvs(n) .ne. 0.0)) then

mseg = n

go to 200

end if

100 continue

200 continue

C --- construct record name a write data

call GMCORN (rname. 'KODE ', I, mseg)

call GMPUTN ('W', idi, idsn, rname, 'I', kode, mseg,

$ O, O, O, 1100)

call GMCORN (rname. 'BVN ', I, mseg)

call GMPUTII ('W'. Idi. idsn, rname. 'S'. bvn, mseg,

$ O. O, O. 1200)

call GMCORN (rname, 'BVS ', I, mseg)

call GMPUTN ('W', Idi, idsn, rname, 'S', bvs, mseg,

$ O, O, O, t300)

call GMFLUB (Idi. O, 2000)

else

print *. '*:_* lllegal keyword ', key, ' in BC data'

end if

go to i000

end

This subrouti,e _)llows the outlim, _)r LOAD and STORE given in §7.1.2 and §7.1.l.

This also illustrates tile use of the "load keyword" entry points of Ill, §8.2. These calls

search for keywords such as SS and move them to the subroutine work area. This simplifies

keyword legality tests such as "SS and SD cannot appear in the same command." 'IS do

these chores DEFINE_BOUIIDARY calls _uhroutine BCVALUES:

Store boundary condition values in tables

subroutine

$

BCVALUES

(iseg, nw, word, iloc)

implicit none

include 'segment.inc'

character*(*) word(2)

real FCLVAL

integer iseg, nw, iloc(2)

integer code, i, isd, iloads, iloadn, ks. kd, kn

logical CMATCH

Revised 10/14/1988 I)eveloper's Tutorial for the CSM "[%stbed Architecture 7- 17

Defining Boundary Conditions Defining the Problem

2000

ks = 0

kn = 0

kd = 0

isd = 0

iloadn = 0

iloads = 0

do 2000 i = 1,nw

if (CMATCH (word(i), 'SS')) then

ks = ks * I

iloads = iloc(i)

else if (CMATCH (word(i), 'SD')) then

ks = ks + 1

kd = kd + I

isd = 1

iloads = iloc(i)

else if (CMATCH (word(i), '|IS')) then

kn = kn + 1

iloadn = ilo¢(i)

else if (CMATCH (word(i), '_ID')) then

kn = kn + 1

kd = kd + 1

iloadn = iloc(i)

else

print *, '*** Illegal BC keyword ',

return

end if

if (kn .gt. I ,or. ks .gt. i) then

print *.

return

end if

continue

word(i).' segment',iseg

'*** Illegal BC combination for segment', iseg

if (iloadn .gt. O)

if (iloads .gt. O)

if (kd .eq. O)

code = 1

else if (hd .eq. I)

code = 3

if (isd .eq. O)

else

code = 2

end if

kode(iseg) = code-1

return

end

bvn(iseg) =

bvs(iseg) =

then

then

code = 4

FCLVAL(iloadn+l)

FCLVAL(iloads+l)

° '" st" "7 18 Developer's Tutorial for the CSM le_ l_')e(l Architecture Revised 10/14/1988

Defining the Problem Defining Boundary Conditions

which embodies the logic" for eventually storing the user-sltpplied va,luos into appropriate

spots in arrays BVS and BVtl.

Revised 10/14/1988 Developer's Tutorial for the CSM Testbed Architecture 7- 19

Defining Symmetry Conditions Defining the Problem

7.5 Defining Symmetry Conditions

If the problem exhibits symmetry conditions, _'ommands to specify symm,.try axes

are introduced by the header command DEFINE SYMMETRY_CONDITIONS (which may be

abbreviated to just D S) and haw, the form

XSYM = x,_.y,.

YSYNI = Y._y,n

[LOAD I STORE]

terminated by an END command. Tile XSYM command specifies that x --= x_y,, is a line of

symmetry parallel to _he x axis. The YSYM command specifies that y Yay,, is a line of

symmetry parallel to the y axis. One or two specifications may be given. The Processor

logic does not allow "skew" symmetry conditions.

The implementation of the DEFINE SYMMETRY routine is straightforward:

Read symmetry condition data

subroutine DEFINE_SYMMETRY_COI_DITIONS

implicit none

include 'database.inc'

include 'symmetry.inc'

character*4 key, CCLVAL

integer ixsym, iysym,

real FCLVAL

logical CMATCH

ICLTYP. idsn, LMFI}_D, n

ixsym : mod(ksym,2)

iysym : ksym/2

1000

$
$

call CLREAD (' Symmetry data> ',

' Enter XSYN:xsym or YSYM=ysym or LOAD or STORE

'&&Terminate with EIID')

if (ICLTYP(1) .le. O) then

print _:, '*** Command must begin with keyword'

go to 1000
end if

,//

key = CCLVAL(1)

if (CMATCH (key. 'E^IID')) then

return

else if (CMATCH (key, 'X_SYM')) then

xsym = FCLVAL(2)

ixsym : 1

ksym = 2*iysym + ixsym

else if (CMATCH (key, 'Y^SYM')) then

7- 20 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Defining the Problem Defining Symmetry Conditions

C

C

C

ysym = FCLVAL(2)

iysym = I

ksym = 2*iysym + ixsym

else if (CMATCH (key, 'L^OAD')) then

--- find dataset

idsn = LMFIIID (idi, 'SYMMETRY ', I00)

if (idsn .eq. 0) then

print*. ' Cannot find SYMMETRY dataset; nothing LOADed.'

go to I000

end if

--- read data

n=l

GMGETN ('R/L', idi, idsn, 'KSYM '. 'I'. ksym,

n. O. O. O. 200)

call

n = i

call

n = i

call

call

call

call

call

else

print _.

end if

go to I000

end

GMGETN ('R/L'. idi, idsn, 'XSYM ', 'I'. xsym,

n, O, O, O, 300)

GMGETN ('R/L', idi, idsn. 'YSYM '. 'I'. ysym,

$ n. O, O, O. 400)

else if (CMATCH (key, 'S^TORE')) then

--- install dataset

call GMPUNT (idi, 'SYMMETRY ', idsn. 16. 500)

--- write data

GMPUTI| ('W'. Idi, idsn, 'KSYM ', 'I'. ksym, I.

$ o. o, o. 6oo)
GMPUTN ('W'. idi. idsn, 'XSYM '. 'I', xsym, I.

$ O. O, O. 700)

GMPUT}I ('W'. idi. idsn. 'YSYM '. 'I', ysym, I.

$ O.O.O. 800)

GMFLUB (idi. O, 2000)

'*** Illegal keyword '. key.' in symmetry data'

(Itere KSYM is an integer "symmetry flag" related to that used in the original TWOBI

program.)

The LOAD and STORE commands are iml,h'm¢'.led followi.g the o.tline given in _7.1.2

and §7.1.1. However, here each record is just o.e number, so we do not have to construct

the record name. For more information see [2], _5.1 for the details o[record naming.

Revised 10/14/'1988 Developer's Tutorial for the CSM Testbed Architecture 7- 21

Defining Material Properties Defining the Problem

7.6 Defining Material Properties

Material properties are inlroduced by a DEFIIIE MATERIAL header comrnarld (which

can be abbreviated to just D M). The commands have a simple form:

EM = E

PR = lJ

[LOAD I STORE]

terminated by an END command. The EM command specifies the ela_stic modulus and the PR

command specifies Poisson's ratio. Since DBEM2 is restricted to elastic isotropic materials

and does not consider thermal effects, these two material properties suffice.

The default values for E and u set by CLEAR are 1.0 and 0.0, respectively.

The implementation of DEFINE MATERIALS is straightforward and does not involve

any fancy new construct:

I000

$
$

Read material property data

subroutine DEFIIIE_MATERIAL

implicit none
include 'databaae.inc'

include 'material.inc'

character*4 key, CCLVAL

integer ICLTYP, idsn,
real FCLVAL

logical CMATCH

LMFII']D,n

call CLREAD (' Ivlaterial data> ',

' Enter EM=em or PR=pr or LOAD or STORE&&'//
'Terminate with EIID')

C

if (ICLTYP(1) .le. O) then

print *. '*** Command must begin with keyword'

go to I000

end if

key = CCLVAL(1)

if (CMATCH (key, 'E'IID')) then

return

else if (CMATCH (key, 'EM')) then

em = FCLVAL(O)

else if (CMATCH (key, 'P^R')) then

pr = FCLVAL(O)

else if (CMATCH (key, 'L^OAD')) then

--- find dataset

idsn = LMFIND (idi, 'MATERIAL ', I00)

if (idsn .eq. 0) then

7- 22 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Defining the Problem l)efining Material Properties

C

print*, ' Cannot find MATERIAL dataset; nothing LOADed'

go to i000

end if

--- read data

n = i

call GMGETIJ ('R/L', idi, idsn, 'EM ', 'S', em. n, O,

O, 0," 200)

n = !

call GMGETII ('R/L', Idi, idsn, 'PR ', 'S', pr. n, O,

$ O, O, 300)

else if (CMATCH (key. 'S"TORE')) then

--- install dataset

call GMPUNT (idi, 'MATERIAL ', idsn, 16, 500)

--- write data

call GMPUTN (°W', idi, idsn, 'EM ', 'S °, em, I, O, O,

$ O, 600)

call GMPUTN ('W'. idi, idsn. 'PR ', 'S', pr, I, O, O,

$ O, 700)

GMFLUB (idi, O, 2000)

, key.' in material data'

call

else

print *, '*** Illegal keyword '

end if

go to I000

end

Here tile LOAD and STORE are identical to the previous implementation.

Revised 10/14,/1988 i)evelol)er's Tutorial fi)r the CSM ']'estbed Architecture 7- 23

Defining PrestressData Defining the Problem

C

7.7 Defining Prestress Data

if the iTlilia] stress stale has nonzero compo.e.ts, presiress data have it) h(, introd.ced

by a DEFIIIE PRESTRESS header. The prestress-defi.ition commands have a very simple

[orlii:

SXXO '_
= tT_Z

o

SYYO = c_Z.u
SXYO o_._
[tOAD I STORE]

As usual, these commands are terminated t)y an END command. Undefined prestress com-

ponents are assumed zero.

The implementation of DEFIFIE PRESTRESS is quite similar to that of DEFINE_ATERIAL :

Read prestress (initial field stresses) data

subroutine DEFINE_PRESTRESS

implicit

include

include

character*4

integer

real

logical

none

'database.inc'

'prestress. Jut'

key, CCLVAL

ICLTYP, idsn, tMFIHD, n

FCLVAL

CMATCH

I000

$
$
$

call CLREAD (' Prestress data> ',

' Enter SXXO=sxxO, SYYO=syyO or SXYO=sxyO&&'//

' or LOAD or STORE&&'//

'Terminate with ETID')

if (ICLTYP(1) .le. O) then

print *. '*** Command must begin with keyword'

go to I000

end if

key = CCLVAL(1)

if (CMATCH (key. 'E_IID')) then

return

else if (CMATCH (key, 'SX'XO')) then

sxxO = FCLVAL(O)

else if (CMATCH (key, 'SY_YO_)) then

syyO = FCLVAL(O)

else if (CMATCH (key, 'SX'YO')) then

axyO = FCLVAL(O)

else if (CMATCH (key, 'L^OAD')) then

--- find dataset

idsn = LMFIND (Idi, 'PRESTRESS '. I00)

7- 2.t l)eveloper's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Defining the Problem Defining Prestress Data

C

C

$

$

$

if (idsn .eq. 0) then

print*. ' Cannot find PRESTRESS dataset; nothing LOADed.'

go to 1000
end if

--- read data

n = 1

call GMGETII ('R/L', Idi, idsn. 'SXXO ' 'S' sxxO
. w l

n, O, O, 0, 200)

n = 1

call GMGETN ('R/L', idi, idsn, 'SYYO ', 'S'. syyO,

n. 0. 0. 0. 300)

n = 1

call GMGETH ('R/L', idi. idsn, 'SXYO '

n, O, O, O, 400)

' S' xyO

else if (CMATCH (key, 'S^TORE')) then

--- install dataset

call GMPUI_T (idi, 'PRESTRESS ', idsn, 16, 500)

--- write data

call GMPUTN ('W', idi, idsn, 'SXXO ', 'S', sxxO, I,

O, O, O, 600)

call GMPUTN ('W', idi, idsn, 'SYYO ', 'S', syyO, I,

O, O. O. 70O)

call GMPUTFI ('W', idi, idsn. 'SXYO '. 'S', sxyO, I,

O, O. O. 800)

call GMFLUB (idi, O. 2000)

else

print *,'*** Illegal keyword ', key,' in prestress data'

end if

go to i000

end

Revised 10/14/1988 l)evcloper's Tutorial for the CSM Testbed Architecture 7- 25

I)efining Output Field l,ocations l)efining the Problem

7.8 Defining Output Field Locations

The last piece of input data is not related to tile problem defiflition, but tn the

specification of the field points at which the program user would like to get computed

results, viz., displacements and stresses.

(This set of information is characteristic of boundary element methods, in which all

basic givens and unknowns are at lhe boundary. I[you want information at field points

not on the boundary, you have to ask for it and sl)ecify where.)

For convenience the output locations are not specified point by point, but as equally

spaced points on line segments. You specify the location of the first and last point on the

line, and the number of points, if any, to be "collocated" between the first and last one.

The output field location specification commands are introduced by a DEFIIIE FIELD-

LOCATIONS header command (which may be abbreviated to D F) and have a form remi-

niscent of the segment-definition commands:

LIHE = i FIRST :rf, r,_t , ftrat h_,_t . la.,t= , y, LAST = Xi , Yi [POIl_TS--'ntnt]

[LOAD [STORE]

terminated by an END command. Here n,,_ is the number of intermediate points to be

inserted (equally spaced) between the firsl and last point. If this phrase is omitted, n,,t : 0

is assumed so only the first and last points will be output points. If the first and last points

coincide, output will be at. only on(, point.

For example:

DEF OUT

LIIIE=I F=2_0.2 L=2©3.8 P=9

LIllE=2 F=3.8,0.2 L=0.2,3.8 P=9

STORE

EZ'ID

specifie_ two output lines running at ,t5 _ and 135 _, respectively, with 11 output points

(Iirst _ last +-9) in each, and tile data are stored.

l|ere is the implementation of the DEFINE .OUTPUT LOCATIOI,IS routine:

Read location of output field points

subroutine DEFIIIE_FIELD_LOCATIOIIS

implicit none
include 'database.inc'

include 'output.inc'

character*8 key, CCLVAL
character*20 rname

real FCLVAL

integer ilin, n, mark, ICLVAL, ICLSEK, ICLTYP

7- 26 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Defining the Problem Defining Outp.t Field Locations

k

i000

$
$

integer

real

logical

idsn, LMFIND, ilow, ihigh, nrec, mlin

xy(2)

onepoint, CMATCH

call CLREAD (' Field location data> ',

• Enter LIN=ilin FIRST=xfirst,yfir st LAST=xlast,y last'//

'[P=ninter]&& or LOAD or STORE&&Terminate with END')

if (ICLTYP(1) .le. O) then

print *, '**_ Command must begin with keyword'

go to I000

end if

key = CCLVAL(1)

if (CMATCH (key, 'E^ND')) then

return

else if (CMATCH (key, 'LI^}IE')) then

ilin = ICLVAL(2)

if (ilin .le. 0 .or. ilin .gt. MAXLI_J) then

print *, '_÷ Field line number',ilin,' is out of range'

go to I000

end if

lindef(ilin) = i

nintop(ilin) = 0

onepoint = .true.

if (ICLSEK(3, 'F^IRST ') .ne. O) then

call CLVALF (' ', 2, xy, n)

if (n .ge. I) xfirst(ilin) = xy(1)

if (n .ge. 2) yfirst(ilin) = xy(2)

end if

if (ICLSEK(3, 'L^AST ') .ne. O) then

call CLVALF (' ', 2, xy, n)

if (n .ge. I) xlast(ilin) = xy(1)

if (n .ge. 2) ylast(ilin) = xy(2)

onepoint = .false.

end if

if (onepoint) then

xlast(ilin) = xfirst(ilin)

ylast(ilin) = yfirst(ilin)

end if

if (ICLSEK(3, 'P^OI[ITS') .ne. O) then

nintop(ilin) = max(ICLVAL(O),O)

end if

else if (CMATCH (key, 'LO^AD')) then

--- find dataset

idsn = LMFI}ID (idi, 'FIELD ', I00)

if (idsn .eq. 0) then

printS, ' Cannot find FIELD dataset' nothing LOADed.'

go to 1000

Revised 10/'14/1988 l)eveloper's Tutorial t'or the CSM Testbed Architecture 7- 27

Defining Output Field l,ocati(ms l)efining the Problem

$

$

$

end if

--- get record name cycles, construct record name & read data

n = MAXLIN

call GMGECY (' ', idi idsn, 'LINDEF ', nrec, ilow,

ihigh, 220)

call GMCORII (rname, 'LINDEF ', ilow, ihigh)

call GMGETN ('R/L', idi, idsn, rname, 'I' lindef,

n, 0, 0, 0. 200)

n = MAXLIII

call GMGECY (' ', idi idsn, '_IINTOP ', nrec, ilow,

ihigh, 220)

call GMCORII (rname, 'IIIIITOP ', ilow, ihigh)

call GMGETII ('R/L', Idi, idsn, rname, "I' nintop,

n. O. O, O, 300)

n = MAXLIII

call GMGECY (' ', idi idsn, 'XFIRST '. nrec, ilow,

ihigh. 220)

call GMCORII (rname, 'XFIRST '. ilow, ihigh)

call GMGETII ('R/L' idi, idsn. rname, 'S' xfirst,

n. O, O. O. 400)

n = MAXLIN

call GMGECY (' ', idi idsn, 'YFIRST ', nrec, ilow,

ihigh. 220)

call GMCOKH (rname, '¥FIRST ', ilow, ihigh)

call GMGETN ('R/L', Idi, idsn. rname, 'S' yfirst,

n, O, O. O, 500)

n = MAXLI_I

call GMGECY (' ', idi idsn, 'XLAST '. nrec. ilow,

ihigh. 220)

call GNCOKII (rname. 'XLAST ', ilow. ihigh)

call GMGETN ('R/L', Idi. idsn, rname, 'S' xlast,

n, O, O, O. 600)

n = MAXLIN

call GMGECY (' '. idi idsn, 'YLAST ', nrec, ilow,

ihigh. 220)

call GMCOR[I (rname, 'YLAST '. ilow, ihigh)

call GMGETII ('R/L'. idi, idsn, rname, 'S' ylast,

n. O, O. O, 700)

else if (CMATCH (key, 'S^TORE')) then

--- install dataset

call GMPU|IT (Idi. 'FIELD ', idsn, 16, 1000)

--- determine largest value of lindef

do i00 n=MAXLIII,I, -I

if (lindef(n) .ne. 0) then

mlin = n

go to 200

end if

I00 continue

7- 28 Developer s Tutorial for the CSM Iestb_.d Architecture Revised !.0/14/1988

Defining the Problem Defining Output Field Locations

20O continue

--- construct record name & write data

call GMCORII (rname 'LINDEF ', I. mlln)

call GMPUTI[('W idi idsn, rname 'I

O, O, O, 1100)

call GMCORI{ (rname 'I]IHTOP '. i. mlin)

call GMPUTN ('W idi idsn, rname 'I

O, O, O, 1200)

call GMCOR_I (rname 'XFIRST ', I, mlin)

call GMPUTN ('W idi idsn, rname 'S

O, O, O, 1300)

call GMCORN (rname 'YFIRST ', I, mlin)

call GMPUTH ('W idi idsn. rname 'S

O, O, O, 1400)

call GMCORN (rname 'XLAST ', 1. mlin)

call GMPUTI_ ('W idi idsn, rname 'S

O, O, O, 1500)

call GMCORN (rname 'YLAST ', i. mlin)

call GMPUTN ('W idi idsn, rname 'S

O, O, O, 1600)

GMFLUB (idi, O, 2000)

$
call

else

print *, '_+* Illegal keyword '

end if

go to 1000

end

lindef, mlin,

nintop, mlin,

xfirst, mlin.

yfirst, mlin,

xlast, mlin,

ylast, mlin,

• key.' in field loc data'

Once again, the LOAD and STORE c()mrnand implementations follow the outline given

in §7.1.2 and §7.1.1.

The input, data section is complete.

Revised 10/14/1988 Developer's Tutorial for tile CSM Testbed Architecture 7- 29

l)efining Output Field Localions l)efining the Problem

THIS PA(;E LEFT BI_ANK INTENTIONALLY.

7- 30 Developer's Tutorial for the CSM Tcstl,ed Architecturc Revised 10/14/1988

Solving the Problem

8. Solving the Problem

Having finished input data preparation, the three steps involved in solving lhe elasto-

static problem are as follows.

Building the Boundary Element Model. The input data have defined the geometry of the

problem in terms of segments. Segments are broken down into equally spaced boundary

elements. The first step consists of building elenmnt-by-element data, and is carried out

when you enter the command BUILD.

Assembling the Discrete Equations. This step generates a matrix C of "influence coeffi-

cients" and a vector r of "forcing functions." These arrays have dimensions equal to twice

the total number of boundary elements. The construction of the elements of C and r fol-

lows the direct formulation of boundary-integral methods and is not explained here. This

step is triggered by the cornmand GENERATE and is carried out by subroutine GENERATE

and subordinate routines.

Soh, ing for the unknowns. The linear equation system Cx - r is solved (by a Gauss

elimination method) for vector x, which contains the boundary unknowns. This step is

triggered by command SOLVE and is carried out by subroutine SOLVE and a subordinate
routine.

For each of these commands, BUILD, GENERATE, and SOLVE the qualifiers LOAD and

STORE can be used. If the qualifier is LOAD then the data are loaded from the open GAL

Library without computing the data. If the qualifier is STORE the data are computed, then

stored in the GAL Library. The presence of the qualifier is deternlined in the subroutine

DO_COMMA_ID;see §5. The value of the qualifier is passed to BUILD, GENERATE, and SOLVE

as the argument op, a blank value is the default.

All of the GAL entry points and methods for loading and storing data have been

illustrated previously in §7.0, al_tt since we are not going It) explain the theory behind these

tasks, the BUILD, GENERATE and SOLVE subroutines are listed next without commentary.

Build detailed boundary element data

subroutine BUILD (op)

implicit none
include 'database.inc'

include 'segment.inc'
include 'element,inc'

include 'material.inc'

include 'prestress.inc'

character_(*) op
character*20 rname

integer iseg. k. ne. num

integer idsn. LMFIIID. ilow.

real xd. yd. side

ihigh, nrec, n

Revised 10/14/19g_ I)eveloper's Tutorial for the CSM Testbed Architecture 8- I

1500

2000

C

C

C

if (op .eq. 'LOAD') go to 5000

k = 0

do 2000 iseg = I,MAXSEG

if (segdef(iseg) .eq. O) go to 2000

num= numel(iseg)

xd = (xend(iseg)-xbeg(iseg))/num

yd = (yend(iseg)-ybeg(iseg))/num

side = sqrt(xd**2+yd**2)

if (side .eq. 0.0) go to 2000

do 1500 ne = l,num

k= k+l

if (k .gt. MAXELM) then

print *, '*_:* Boundary element count exceeds ',MAXELM

print *, ' Excess elements ignored'

return

end if

xme(k) = xbeg(iseg) + 0.5*(2.*ne-l)*xd

yme(k) = ybeg(iseg) + 0.5_(2.*ne-l)*yd

hleng(k) = 0.5*side

sinbet(k) = yd/side

cosbet(k) = xd/side

b(2*k-l) = bvs(iseg)

b(2*k) = bvn(iseg)

kod(k) = kode(iseg)

continue

continue

numbe = k

print '('' Discrete model building completed:'',

$ 15,'' boundary elements''/)', numbe

if (op .eq. 'STORE') then

--- STORE data

--- install dataset

call GMPUNT (idi, 'ELEMENT ', idsn, 16, I000)

construct record name k write data

call GMPUTII ('W', idi, idsn, 'IIUMBE ', 'I', numbe,

$ I, O, O. O. 1050)

call GMCORN (rname, 'XME ', I, numbe)

call GMPUTN ('W', idi, idsn. rname, 'S'. xme. numbe,

$ O. O, O. 1100)

call GMCORrl (rname, 'YME '. 1, numbe)

call GMPUTN ('W', ldi. idsn, rname, 'S', yme. numbe,

$ O.O.O. 1200)

call GMCORN (rname. 'HLEIIG '. 1, numbe)

call GMPUTIJ ('W', idi, idsn, rname, 'S', hleng, numbe,

$ O, O, O, 1300)

call GMCORN (rname, 'SINBET ', 1, numbe)

call GMPUTN ('W', ldi, idsn, rname, 'S', sinbet, numbe,

$ O, O, O. 1400)

- 2 Developer's Tutorial for the CSM "l',stbed Architecture Revised 10/14/1988

Solving the Problem

call

call

$
call

call

$
call

call

S
call

end if

return

:?

GMCORIT (rname, 'COSBET ', I, numbe)

GMPUTN ('W'. idi, idsn, rname, 'S', cosbet, numbe,

O, O. O, 1500)

GMCORN (rname, 'KOD ', i, numbe)

GMPUTH ('W', Idi, idsn, rname, 'I', kod, numbe,
O. O. O, 1600)

GMCORH (rname, 'B ', I. 2*numbe)

GMPUTH ('W', idi, idsn, rname, 'S', b. 2_numbe,

O, O. O, 1500)

GMFLUB (Idi. O. 2000)

5000 continue

C LOAD data

C --- find dataset

idsn = LMFIND (idi, 'ELEMEtlT ', i00)

if (idsn .eq. 0) then

print*, ' Cannot find ELEMEHT dataset; nothing LOADed.'
return

end if

C --- get record name cycles, construct record name & read data

n = 1

call GMGETN ('R/L', idi, idsn, 'NUMBE ', 'I', numbe,

$ n, O, O. O, 150)

n = MAXELM

call GMGECY (' '. idi. idsn, 'XME ', nrec, ilow,

$ ihigh, 180)

call GMCORU (rname, 'XME '. ilow. ihigh)

call GMGETH ('R/L', idi, idsn. rname, 'S', xme,

$ n, O, O, O. 200)

n = MAXELM

call GMGECY (' ', idi, idsn. 'YME ', nrec, ilow,

$ ihigh, 280)

call GMCORII (rname, 'YME ', ilow. ihigh)

call GMGETII ('R/L', idi, idsn. rname, 'S', yme.

$ n, O, O, O, 300)

n = MAXELM

call GMGECY (' '. idi. idsn, 'HLENG '. nrec. ilow.

$ ihigh. 380)
call GMCORIJ (rname, 'HLEIIG ', ilow, ihigh)

call GMGETtJ ('R/L'. idi, idsn, rname, 'S'. hleng,

$ n, O, O, O, 400)

n = MAXELM

call GMGECY (' ', idi, idsn, 'SIHBET ', nrec, ilow,

$ ihigh, 480)

call GMCORIi (rname. 'SINBET ', ilow. ihigh)

call GMGETII ('R/L'. idi, idsn. rname, 'S'. sinbet.

Revised 10/14/1988 Developer's Tutorial for the CSM Testbed Architecture 8- 3

Solving the Problem

$ n, O, O, O, 500)

n = MAXELM

call GMGECY (' ', ldi. idsn, 'COSBET '. nrec, ilow,

$ ihigh, 580)

call GMCORI{ (rname, 'COSBET ', ilow, ihlgh)

call GMGETN ('R/L', idi, idsn, rname, 'S', cosbet,

$ n. O, O, O, 600)

n = MAXELM

call GMGECY (' ', idi. idsn. 'KOD ', nrec, ilow.

$ ihigh, 680)

call GMCORN (rname, 'KOD ', ilow, ihigh)

call GMGETN ('R/L', idi, idsn, rname, 'I', kod,

$ n.O.O. O, 700)

n = MAXEQS

call GMGECY (' ', idi, idsn, 'B ', nrec, ilow,

$ ihigh, 780)

call GMCORN (rname, 'B '. ilow, ihigh)

call GMGETN ('R/L', idi, idsn. rname, 'S', b.

$ n, O, O, O, 800)

Calculate influence coefficient matrix and RHS vector

subroutine GEHERATE (op)

implicit

include

include

include

include

include

none

'database.inc'

'material.inc'

'element.inc'

'prestress.inc'

'sym_metry.inc'

character*(*) op

character*20 rname

integer i, j, n, nrec, ilow, ihigh, LMFIND. idsn. igap

real sinbi, cosbi, sinbj, cosbj, ssO, snO, g

real xi, xj, yi, yj, sj

real ass. asn, ans, ann, bss, bsn, bns, bnn

if (op .eq. 'LOAD') go to 4000

g = 0.5*em/(l.+pr)

do 3000 i = l,numbe

r(2*i-l) = O.

r(2*i) = O.

xi = xme(i)

yi = yme(i)

cosbi = cosbet(i)

8- 4 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Solving the Problem

sinbi =

do 2500

ass =

asn =

arts =

ann =

bss =

bsn =

bns =

bnn =

xj =

yj =

$
$

end if

call

$
$

2500 continue

3000 continue

sinbst (i)

j = l,numbs

0.0

O0

O0

O0

O0

O0

O0

0.0

xme (j)

yme (j)

cosbj = cosbet(j)

sinbj = sinbet(j)

sj = hleng(j)

ssO = (syyO-sxxO)*sinbj_cosbj + sxyO*(cosbj**2-sinbj**2)

snO = sxxO*sinbj**2 - 2.*sxyO_sinbj*cosbj + syyO*cosbj**2

call COEFF (xi. yi, xj, yj, sj.

i, em. pr. cosbi, sinbi, cosbj, sinbj.

ass, asn, ans, ann, bss, bsn. bns, bnn)

if (ksym .eq. I .or ksym .eq. 3) then

call COEFF (xi, yi, 2.*xsym-xme(j), yj, sj,

-I, em, pr, cosbi, sinbi, cosbj, -sinbj,

ass, asn, ans, ann, bss, bsn, bns, bnn)

end if

if (ksym .eq. 2 .or. ksym .eq. 3) then

call COEFF (xi, yi, xj, 2.*ysym-yme(j), sj,

-I, em, pr, ¢osbi. sinbi, -cosbj, slnbj,

ass. asn, ans, ann. bss, bsn, bns, bnn)

end if

if (ksym .eq. 3) then

call COEFF (xi, yi, 2._xsym-xme(j), 2.*ysym-yms(j), sj,

i, em, pr, cosbi, sinbi, -cosbj, -sinbj,

ass, asn, ans, ann, bss, bsn, bns, bnn)

SETUP (i, j, kod(j), g, ssO, snO,

ass, asn, ans, ann, bss, bsn, bns, bnn,

b, c, r, 2*numbs, MAXEQS)

print *, 'Influence coefficient matrix _ RHS vector generated'

if (op .eq. 'STORE') then

--- STORE data

--- install dataset

call GMPUNT (idi, 'COEFF '. idsn. 16, I00)

--- construct record name k write data

n = 2*numbs

igap = MAXEQS n

Revised 10/'14//1988 Developer's Tutorial for the CSM Testbed Architecture 8- 5

Solving the Problem

C

c

call GMCORH(rname, 'C '. I, n)

call GMPUTN ('W', Idi. idsn, rname. 'S', c, -n,

$ O, igap, O, 200)

install dataset

call GMPUNT (idi. 'RHS ', idsn, 16. 500)

--- construct record name _ write data

n = 2*numbe

call GMCORN (rname, 'R ', i, n)

call GMPUTH ('W', idi, idsn, rname, 'S', r, n,

$ O, O, O, 600)

call GMFLUB (Idi. O, 2000)

return

end if

C --- LOAD data

4000 continue

C --- find dataset

idsn = LMFIND (Idi, 'COEFF '

if (idsn .eq. 0) then

Iooo)

printS. ' Cannot find COEFF dataset; nothing LOADed.'
else

C --- get record name cycles, construct record name & read data

n = MAXEQS**2

call GMGECY (' ', idi, idsn, 'C ', nrec, ilow,

$ ihigh, II00)

igap = MAXEQS - nrec

call GMCORN (rname, 'C ', ilow, ihigh)

call GMGET_I ('R/L', Idi, idsn, rname, 'S', c,

$ n, O, igap, O, 1200)

end if

C --- find dataset

idsn = LMFIHD (idi, 'RHS ', 1500)

if (idsn .eq. 0) then

print*, ' Cannot find RHS dataset; nothing LOADed.'

else

C --- get record name cycles, construct record name & read data

$
call

call

$
end if

n = MAXEQS

call GMGECY (' ', ldi, idsn. 'R ', nrec, ilow.

ihigh, 1600)

GMCORH (rname, 'R '. ilow, ihigh)

GMGET_] ('R/L', Idi, idsn, rname, 'S', r,

n, O, O, O, 1700)

return

end

Solve for unknown boundary values

8 6 l)eveloper's Tutorial for the CSM Testl)ed Architecture Revised 10/14/1988

Solving the Problem

C

C

C

subroutine SOLVE (op)

implicit none

include 'database.inc"

include 'element.inc'

character*(*) op

character*20 rname

integer ising

integer n, nrec. ilow. ihigh. LMFIND, idsn

$

call

end if

else

if (op .eq. 'LOAD') go to 1000

call GAUSSER (c, r, x, 2_numbe, MAXEQS, ising)

if (ising .eq. O) then

print _, 'Discrete equations solved'

if (op .eq. 'STORE') then

--- STORE data

--° install dataset

call GMPUNT (Idi, 'SOLUTIO_I ', idsn. 16. 500)

--- construct record name & write data

n = 2*numbe

call GMCORN (rname, 'X ', I. n)

call GMPUTN ('W', idi. idsn, rname, 'S'. x, n,

o. o. o, 600)
CMFLUB (ldi, O. 2000)

print _, 'Singularity detected at BE equation',ising

end if

return

C --- LOAD data

i000 continue

C --- find dataset

idsn = LMFIIID (idi, 'SOLUTION '. 1500)

if (idsn .eq. 0) then

print*. ' Cannot find SOLUTIOI_ dataset; nothing LOADed.'

else

--- get record name cycles, construct record name & read data

n = MAXEQS

call GMGECY (' '. Idi, idsn. 'X ', nrec, ilow.

$ ihigh, 1600)

call CMCORI] (rname, 'X ', ilow, ihigh)

call GMGETN ('R/L', idi, idsn, rname, 'S', x,

n. O, O, O, 1700)$
end if

return

Revised 10/l,l/19S£ I)eveloper's Tutorial for the CSM TestSed Architecture 8- 7

Solving the Problem

end

,qubroutine GEEIERATE calls COEFF (which is essentially the same as a TWOBI sui)routline

with the same name) and SETUP, which fills the entries of the influence coetficient matrix

and right-hand-side vector:

Calculate source/receiver coefficients

subroutine COEFF

$ (xi. yi. xj, yj. aj,

$ msym, em, pr. cosbi, sinbi, cosb, sinb,

$ ass, asn, ans, ann, bss, bsn, bns. bnn)

implicit

real

real

real

real

integer

real

real

real

real

real

none

xi. yi, xj, yj, aj

em, pr, cosbi, sinbi, cosb, sinb

ass, asn, ans, ann, bss, bsn, bns, bnn

pi, con, prl, pr2, pr3

msym

cma, cpa. cxb. cyb, cosg, sing

rls, r2s, fll, f12

tbl. tb2, tb3. tb4. tb5

asst. asnt, anst, annt

bsst, bsnt. bnst, bnnt

p± =

con =

prl =

pr2 =

pr3 =

cxb =

4.*atan2(1.,1.)

1.O/(4.*pi_(1.-pr))

1.-2;pr

2.*(l.-pr)

3.-4.*pr

(xi-xj)*cosb + (yi-yj)_sinb
r" -_r"cyb = -(xi-xj)*sinb + (_1 ,,j)*cosb

cosg = cosbi*cosb ÷ sinbi*sinb

sing = sinbi*cosb cosbi*sinb

cma =

cpa =

rls =

r2s =

fll =

f12 =

tb2 =

tb3 =

tbl =

tb4 =

tb5 =

cxb - aj

cxb ÷ aj

cma**2 + cyb**2

cpa**2 + cyb*_2

0.5*log(rls)

O.5*log(r2s)

-con*(fll-fl2)

con*(atan2(cpa,cyb)-atan2(cma,cyb))

-cyb_tb3 ÷ con*(cma*fll-cpa*fl2)

con*(cyb/rls-cyb/r2s)

con*(cma/rls-cpa/r2s)

asst = pr2*cosg*tb3 + prl*sing;tb2 * cyb*(sing_tb4*cosg*tb5)

'S8- 8 I)eveloper's Tutorial for the (.._ M Testbed Architecl,_re Revised 10/1,1/1988

Solving the Problem

asnt =

ansi :

annt =

bsst =

bsnt =

bnst =

bnnt =

-prl*cosg*tb2 + pr2:_sing*tb3 ÷ cyb*(cosg*tb4-sing*tbS)

-pr2*sing*tb3 + prl*cosg_:tb2 * cyb*(cosg*tb4-sing*tb5)

prl*sing*tb2 + pr2*cosg*tb3 cyb*(sing*tb4*cosg*tbS)

pr3*cosg*tbl + cyb*(sing*tb2-cosg*tb3)

pr3*sing*tbl + cyb,(cosg*tb2+sing*tb3)

-pr3_sing*tbl ÷ cyb*(cosg*tb2+sing*tb3)

pr3_cosg*tbl - cyb,(sing*tb2-cosg*tb3)

ass = ass + msym*asst

asn = asn + asnt

ans= arts ÷ msym*anst

ann = ann + annt

bss = bss * msym*bsst

bsn = bsn + bsnt

bns = bns + msym*bnst

bnn = bnn + bnnt

return

.... end

Set up influence coeff matrix and RHS of discrete system

subroutine

$
$
$
$

SETUP

(i. j. bckodj, g. ssO, snO,

ass, asn, ass. ann,

bss. bsn, bns, bnn,

b, c, r, n, nc)

implicit

integer

real

real

real

none

i, j, n, nc, bckodj

ss0, sn0, g, bs, bn

ass, asn. ans, ann, bss, bsn, bns, bnn

b(!), c(nc,*), r(*)

if (bckodj .eq. 0) then

c(2,i-1,2,]-1) = ass

c(2*i-l,2÷:j) = asn

c(2_i .2_j-l) = ans

c(2_'i ,2*j) = ann

bs = O.5_(b(2_j-1)-ssO)/g

bn = 0.5*(b(2*j)-sn0)/g

r(2_i-l) = r(2*i-t) + bss*bs + bsn*bn

r(2*i) = r(2 :_i) + bns*bs * bnnZbn

else if (bckodj .eq. 1) then

c(2*i-l,2*j-1) = -bss

c(2!:i-l,2*j) = -bsn

c(2*i ,2*j-l) = -bns

k -

Revised 10/14/1988 Developer's Tutorial for the CSM Testbed Architecture 8- 9

Solving the Problem

c(2*i ,2*j

r(2*i-1) =

r(2*i) =

else if (bckodj .eq. 2)

c(2*i-l,2*j-1) = -bss

c(2*i-l,2*j) =

c(2*i ,2!j-l) =

c(2*i ,2*j) =

bn = 0.5. (b(2*j

) = -bnn

r(2_i-1) - ass_b(2*j-1) asn*b(2*j)

r(2ti) - ans*b(2*j-1) - ann*b(2*J)
then

asn

-bns

ann

)-snO)/g

r(2*i-1) =

r(2_i) = r(2*i

else

c(2*i-l,2*j-1) =

c(2*i-l,2*j) =

c(2*i ,2*j-l) =

c(2*i ,2*j) =

r(2*i-1) - ass*b(2*j-1) + bsn*bn

) - ans*b(2*j-1) + bnn*bn

ass

-bsn

ans

-bnn

bs : 0.5*(b(2*j-1)-ss0)/g

r(2:!:i-1) = r(2_i-1) + bss*bs - asn*b(2*j)

r(2*i) = r(2;i) * bns*bs - ann*b(2*j)

end if

return

end
...

Subroutine SOLVE calls GAUSSER, which is a naive implementation of unsymmetric Gauss

elimination without pivoting:

Solve algebraic equation system A x = b by Gauss elimination

subroutine GAUSSER

$ (a. b. x. n, na. ising)

implicit

integer

real

integer

none

n, na, ising

a(na,!) , b(_). x(*), c, sum

i, j, k

1400

ising = 0

do 2000 j = 1,n-1

if (a(j,j) .eq. 0.0) then

ising = j

return

end if

do 1500 k = j+l,n

c = a(k,j)/a(j,j)

do 1400 i = j.n

a(k,i) = a(k,i) - c:;:a(j.i)

continue

b(k) : b(k) - c*b(j)

8- 10 Developer's Tutorial for the CSM 'l'estbed Architeclure Revised 10/21,/1988

Solving the Problem

1500 continue

2000 continue

x(n) = b(n)/a(n,n)

do 3000 j = n-1.1,-1

sum = 0.0

do 2500 i = j+l.n

sum = sum + a(j,i)_x(i)

2500 continue

x(j) = (b(j)-sum)/a(j,j)

3000 continue

return

end

(The only redeeming quality about GAUSSER is that the cod(' is quite short; in fact, it's

about the shortest possible implementation of a linear equation solver.)

Revised 10/14/1988 Developer's Tutorial for the CSM Testbed Architecture 8- 11

Solving the Problem

THIS I'AGE I,EFT BLANK INTENTIONAIA, Y.

8- 12 Developers Tutorial for the C,_5,1TestbedArchitecture Revised10/14/1988

Printing Data

9. Printing Data

One area in which interactive operation excels is data display. If you are u_ing an

interactive Processor for a engineering design task, you can selectively trim the otherwise

voluminous output to the important essentials. Conversely, if you are debugging a new

or modified implementation, you may want more output than is normally required; for

example printing the influence coefficient matrix.

What goes for printed output applies with equal force to graphic output. We are not

going to illustrate graphic displays here, however, since the details depend strongly on the

output device and the plotting software you are using.

rI'he PRItlT command is similar to the DEFINE command in that it takes a second

keyword that specifies what is to be printed:

SEGMENTS segment geometry data and number of elements t)er seg-

BOUI,IDARY_CO_{DITIOIIS

SYMMETRY_COIIDITIDIiS

MATERIAL

PRESTRESS

FIELD_LOCATIOIIS

ELEMENTS

COEFFICIEITTS

RHS

Prints

inent.

Prints

values

Prints

Prints

Prints

Prints

Prints

BUILD

Prints

gRATE

SOLUTIO}J

RESULTS

boundary condition (BC) code and prescribed boundary

for each segment.

symmetry conditions if any in effect.

material property data.

t)restress data.

information about output-location lines if any is defined.

detailed boundary-element data produced by subroutine

(this is primarily for debugging).

the matrix C of influence coefficients assembled by GEtl-

(this is primarily for debugging).

Prints the right-hand side (forcing) vector r assembled by GEN-

ERATE (this is primarily for debugging).

Prints the sohJtion vector x calculated by SOLVE (this is pri-

marily for debugging).

I'rint stresses and displacements a i boundary-element mid-

points or at output field locations, depending on a command

qualifier.

In this section none of the sut)roulines load or store data. [towever, in areal Processor

the results, such as (tisl)lacelnenls and stresses, which are ('Oml)uted under the PRIIIT

RESULTS comnmn(t would be st(wed. They wouht be stored be('ause these results are often

plotted or reordered for tabulation. The ph)ts and tables are used to study the results or

for inclusion in a report or as presentation. By now you should be able to modify PRINT

RESULTS, §9.3, to LOAD and STORE data for the post-processing activities described above.

Be brave give it a try.

The PRI}IT command is processed by subroutine PRII,IT, which has a "case" structure

similar to thai of subroutine DEFIIIE:

Revised 10/1,1/1988 l)eveloper's Tutorial fi)r the CSM Testbed Architecture 9- 1

Printing Data

* Interpret PRINT command

subroutine PRINT

implicit none

character key*8. CCLVAL*8

integer ICLTYP

logical CMATCH

if (ICLTYP(2) .le. O) then

call CLREAD (' PRINT what? '

$
$
$

' BOUNDARY. ELEMENTS, COEFFICIENTS,'//

'FIELD, MATERIAL, PRESTRESSk&'//

'RESULTS. RHS, SOLUTION, SYMMETRY')

key = CCLVAL(1)

else

key = CCLVAL(2)

end if

if (CMATCH (key, 'B'OUNDARY')) then

call PRINT_BOUNDARY_CONDITIONS

else if (CMATCH (key, 'C'OEFFICIEHTS') .or.

$ CMATCH (key, 'I_NFLUENCE')) then

call PRIIIT_INFLUENCE_COEFFICIENTS

else if (CMATCH (key. 'E^LEMENTS')) then

call PRINT_ELEMENTS

else if (CMATCH (key, 'F'IELD')) then

call PRINT_FIELD_LOCATIONS

else if (CMATCH (key, 'M^ATERIAL')) then

call PRINT_MATERIAL

else if (CMATCH (key, 'P^RESTRESS')) then

call PRINT_PRESTRESS

else if (CMATCH (key. 'RE^SULTS')) then

call PRINT_RESULTS

else if (CMATCH (key. 'RHS')) then

call PRINT_RHS_VECTOR

else if (CMATCH (key, 'SE^GMENT')) then

call PRINT_SEGMENTS

else if (CMATCH (key, 'SAOLUTIO{I')) then

call PRINT_SOLUTIOH_VECTOR

else if (CMATCH (key, 'SY^MMETRY')) then

call PRINT_SYMMETRY CONDITIONS

else

print *,'*** Illegal or ambiguous keyword '.key,' after PRINT'

end if

return

end

9- 2 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Printing Data

Subroutine PRI_IT provides our second example of an implementation that prompts /or

mi._._in.q data. See DB OPEN, §6.0, for another example. If you type only the keyword PRIIlT

followed by a carriage return, you will see tile prompt

Print what7

oll the screen, and you are supposed to lype tile next keyword, e.g., SEGMENTS that you for-

got. (Notice that this friendly technique was not used for the DEFINE command explained

in ,_7.O; instead subroutine DEFItlE conlplains about missing keywords after DEFINE.)

Next we examine the subordinate routines.

Revised 10/14/1988 Developer's Tutorial for the CSM Testbed Architecture 9- 3

9.1 Printing Input Data

The implementation of the subroutines that print segment, boundary condition, sym-

metry, material, prestress, and field-location data is straightforward and so are simply

listed next as a group:

Print segment data

subroutine PRINT_SEGMENTS

implicit none

include 'segment.inc'

integer i, k

$

2000

k : 0

do 2000 i = I,MAXSEG

if (segdef(i) .gt. O) then

if (k .eq. O) then

print '(/A/A6,Ag,4AI2)',

' Boundary Segment Data',

Ybeg Xend Yend''Segm', 'Elements', 'Xbeg', ' ', ' ', '

end if

k = k+l

print '(16,19,3X,4GI2.4)',

i, numel(i), xbeg(i), ybeg(i), xend(i), yend(i)

end if

continue

if (k .eq. O) then

print *, 'Segment tables are empty'

end if

print *,

return

end

Print boundary data in response to a PRINT BOUNDARY command

subroutine PRIHT_BOU_DARY_COND ITIONS

implicit none

include 'segment.inc'

integer i, k

character*9 given(O:3)

data given /'SS and ;IS', 'SD and _ID', 'SD and NS', 'SS and ND'/

k = 0

do 2000 i = I.MAXSEG

if (segdef(i) .gt. O) then

9- 4 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Printing Data Printing Input Data

$

2000

if (k .eq. O) then

print '(/A/A6,AII,2A12)',

' Boundary Conditions Data', 'Segm',

'Given', 'Shear', 'Normal'

end if

k = k+ 1

print '(I5,1X,All,3X,lP2G12.3)',

i, given(kode(i)), bvs(i), bvn(i)

end if

continue

if (k .eq. O) then

print _, 'Boundary tables are empty'

end if

print *, ' '

return

end

Print symmetry data

subroutine PRIIIT_SYMHETRY_COND ITIONS

implicit none

include 'symmetry.inc'

print '(/A)', ' Symmetry Data'

if (ksym .eq. 3) then

print _, 'Symmetry about axis X=',xsym

print _, ' and axis Y=',ysym

else if (ksym .eq. i) then

print _, 'Symmetry about axis X=',xsym

else if (ksym .eq. 2) then

print _, 'Symmetry about axis Y=',ysym

else

print _, '11o symmetry conditions'

end if

print *, ' '
return

end

Print material property data

subroutine PRINT_NATERIAL

implicit none

include 'material.inc'

print '(/h)', ' Material Property Data'

-r

Revised 10 '14 _ r 1988 l)ev(lop(r s T.torial for the CSM Te.stbed Architecture 9 5

Printing Input l)ala i'rinting l)ata

2OOO

print '(" Elastic modulus:'',iPEl2.3)', em

print '('' Poisson s ratio:'',Fl2.3)', pr

print *, ' '

return

end

Print field location data

subroutine PRINT_FIELD_LOCATIOHS

implicit none

include 'output.inc'

integer i, k

k = 0

do 2000 i = I,MAXLII_

if (lindef(i) .gt. O) then

if (k .eq. O) then

print '(IA/A6,Ag,A9,3AI2)',

$ ' Field Location Data',

$ 'Line', 'Int.Pts', 'x-first', 'y-first',

$ 'x-last', 'y-last'

end if

k : k + i

print '(I6,I9,4G12.4)',

$ i, nintop(i), xfirst(i), yfirst(i), xlast(i), ylast(i)
end if

continue

if (k .eq. O) then

print *, 'FIELD Location Tables are empty'
end if

print *, ' '

return

end

9- (; l)eveloper'_ Tutorial for" the (;SM Tostbed Architecture Revised 10/14/1988

Printing Data Debug-Oriented Print Commands

9.2 Debug-Oriented Print Commands

The PRIIIT ELEMEIITS, PRIIIT COEFFICIEHTS, PRIIIT RHSand PRIIIT S0[,UTI01Iaro

detailed print commands primarily useful in debug situations. They are i,nplemented in

the fi,llowin_ subroulines:

Print detailed boundary element data

subroutine PRIIIT_ELENEIITS

implicit none

include 'segment.inc'

include 'element.inc'

integer m

if (numbe .le. O) then

print *, 'Boundary element table empty'

return

end if

print '(/A/A5,A8,2AII,AI2,A8,Ag,AI2)',

$ ' Boundary Element Data',

$ 'Elem', 'Xmid', '¥mid', 'Length',

$ 'Orient', 'BCode', 'Shear', 'Hormal'

do 2000 m = l,numbe

print '(I5,1P3GII.3,0PFIO.2,I6,1P2GI2.3)',

$ m,xme(m),yme(m),2._:hleng(m),

$ (180./3.14159265)*atan2(sinbet(m),cosbet(m)),

$ kod(m), b(2*m-1).b(2*m)

2000 continue

print ÷:, ' '
return

end

Print influence coefficient matrix

subroutine PRIIIT_II,IFLUE[ICE_COEFFICIEIITS

implicit none

include 'segment inc'

include 'element.inc'

print '(/A)', ' Influence Coefficient Matrix'

call PRINT_REAL_MATRIX (c, MAXEQS, 2*numbe,

print *, ' '

return

end

2*numbe)

Revised 10,'14/198f_ I)eveloper's Tutorial for the CSM Testbed Architecture 9- 7

Debug-OrientedPrint Commands Printing Data

Print right hand side vector

subroutine PRINT_RHS_VECTOR

implicit none

include 'segment.inc'

include 'element.inc'

print '(/A)', ' Right Hand Side (Forcing) Vector'

call PRII.IT_REAL_MATRIX (r, i, I, 2+numbe)

print *, ' '

return

end
.............................

Print right hand side vector

subroutine PRINT_SOLUTION_VECTOR

implicit none

include 'segment.inc'

include 'element.inc'

print '(/A)', ' Solution Vector'

call PRIIIT_REAL_MATRIX (x, 1. I, 2+numbe)

print *, ' '

return

end

The last three subroutines call PRIMATRIX, which is a "no frills" array printer:

3O00

4000

Print real matrix (or vector) in 6-column template

subroutine PRIIIT_REAL_MATRIX

$ (a, ha, m, n)

integer na, m, n, i, j, jref

real a(na,_)

do 4000 jref = O,n-l,6

print '(1X,6112)', (j,j=jref+l,min(jref+6,n))

do 3000 i = 1,m

print '(I4,1P6E12.4)', i,(a(i,j),j=jref+l,min(jref*6,n))

continue

continue

return

end

9-- _ Developer's Tutorial for the CSM 'l'_slbed Archiwcture Revised 10/'14/1988

Printing I)ata Printing Results

9.3

computed aI boundary element midpoinis.

refers to the field points previously defined.

PKII_T RESULTS:

* Process PRII'ITRESULTS command

Printing Results

Tile PRIIlT RESULTS cotmnand withoul a qualifier lists stresses and (lisplacement_

If qualifier FIELD apt)ears, the command

This switch iv implemented in subroutine

subroutine PRItlT_RESULTS

implicit none

integer ICLSEQ

if (ICLSEQ(3,'F'IELD') .eq. O) then

call PRIHT_BOUIIDARY_RESULTS

else

call PRI}IT_FIELD_RESULTS

end if

return

end

The code above provides an example of tile use of ICLSEQ [1), _5.3, to test _r the existence

of a specific qualifier, in this case FIELD.

9.3.1 Printing Boundary R._,sults

This is (tone by subroutine PRIIIT BOUIIDARY RESULTS, the implementation of which is

straightforward:

Print stresses and displacement © boundary element midpoints

subroutine PRI[IT_BOUHDARY_RESULTS

implicit none

include 'segment.inc'
include 'element.inc'

include 'material.in('

include 'prestress.in¢'

integer k

real g, ssO, snO, sinbi, cosbi

real us, un, ux, uy, sign, sigs

print '(/h)', ' Displacements and Stresses at'//

$ ' Boundary Element Midpoints'

print '(A5,Ag,5AII)', 'Elem', 'u_s', 'u_n', 'u_x'
t i

, u_y

Revised 10/14/1988 I)eveloper's Tul,orial for the CSM "l_stbed Architecture 9- 9

Printing Results t'rinting I)at_

$

g = 0.5*em/(l.+pr)

'sig_s', 'sig_n'

do 2000 k = l,numbe

us = x(2*k-l)

un = x(2*k)

sigs = b(2*k-l)

sign = b(2*k)

if (kod(k) .eq. i)

un = b(2*k-l)

us = b(2*k)

sigs = x(2*k-l)

sign = x(2*k)

else if (kod(k) .eq. 2)

us = b(2*k-l)

sigs = x(2*k-1)

else if (kod(k) .eq. 3)

un = b(2*k)

sign = b(2*k)

end if

sinbi = sinbet(k)

cosbi = cosbet(k)

ux = us*cosbi - un*sinbi

uy = us'_sinbi * un*cosbi

then

then

then

print '(I5,1P6GII.3)', k, us,un,ux,uy,sigs,sign

2000 continue

print *, ' '

return

end

9.3.2 Printing Field Results

Showing displ_cement and _lresses at field l)oints is complicated by the fact that,

unlike finite element I)rograms, s.(h valuers are .ot readily available but must bc calculated

as part of the display procedure. This will t)ecome evident as one shows the coding of

subrouline PRINT FIELDRESULTS :

Print stresses and displacements _ specified field points

subroutine PRI[IT_FIELD_RESULTS

implicit

include

integer

real

logical

none

'outputinc'

m, p, points

xp, yp, ux, uy, sigxx, sigyy, sigxy, f

skip

9- 10 Developer's Tutorial for the C,qNI Testbed Architecture Revised 10/14/1988

Printing Data Printing Results

print '(/h)', ' Displacements and Stresses at'//

$ ' Specified Field Points'

do 3000 m = I,MAXLI}I

if (lindef(m) .eq. O) go to 3000

print '(AS,2AIO.A8,4AII)', ' Lin', 'x', 'y', 'u_x' 'u y',

$ 'sig_xx', 'sig_yy', 'sig_xy'

points = nintop(m) + 2

if (xfirst(m) .eq. :,:last(m) .and.

$ yfirst(m) .eq. ylast(m)) points = I

f = 0.0

do 2000 p = 1,points

if (points .gt. I) f = real(p-l)/(points-l)

xp = xfirst(m)_(l.O-f) + xlast(m)_f

vp = yfirst(m)_(l.O-f) + ylast(m)_f

call FIELDP (xp, yp. ux, uy, sigxx, sigyy, sigxy, skip)

if (skip) then

print '(IS,2F10.3,6X,A)', m, xp,yp,

$ 'Point is too close to boundary'

else

print '(I5.2FIO.3,1P5GII.3)', m, xp,yp, ux,uy.

$ sigxx, sigyy, sig}:y

end if

2000 cont inue

print _, ' '

3000 continue

return

end

Subroutine FIELDP re('eives the h)rati(,n XP.YP of the field point and returns the displace-

TTIClI| coln|)oneilts ii.r [::tilt]. tl?l, itlltt the Htr('sS ('Olll[)Olt('lltS Ozz , tTyy and azy:

Compute stresses and displacements at field point

subroutine

$
$

FIELDP

(xp, yp,

ux, uy, sigxx, sigyy, sigxy, skip)

implicit

include

include

include

include

include

real

logical

real

none

'segment.inc'

'element.inc'

'material.inc'

'symmetry.inc'

'prestress.inc'

:.:p,yp, us, un, ux, uy, sigxx, sigyy, sigxy

skip

uxus, uxun, u:.:ss, uxsn

Revised 10,14/1988 Developer's Tutorial for the CSM Testbed Architecture 9- 11

Printing Results Printing Data
.......................

real

real

real

real

real

real

real

integer

uyus, uyun, uyss, uysn
sxxus, sxxun, sxxss, sxxsn

syyus, syyun, syyss, syysn

sxyus, sxyun, sxyss, sxysn

xj, yj, sj, cosbj, sinbj

usj, unj, ssj, snj, ssg, sng

g, ssO, snO

J

skip = .false.
ux = 0.0

uy = 0.0

sigxx = sxxO

sigyy = syyO

sigxy = sxyO

g = O.5*em/(l.+pr)

do 2000

UXUS =

uxun =

UXss =

uxsn =

uvun =

uyun =

uyss =

uysn =

j = l,numbe
0.0

0.0

O0

O0

O0

O0

O0

O0

sxxus = 0 0

sxxun = 0.0

s:,:xss = 0.0

sxxsn = 0.0

syyus = 0.0

syyun = 0.0

syyss = 0.0

syysn = 0.0

sxyus = 0.0

sxyun = 0.0

sxyss = 0.0

sxysn = 0.0

:,:j = xme(j)

yj = yme(j)

sj = hleng(j)

if ((xp-xj)**2+(yp-yj)!:*2 .le. 1.01:!:(sj)**2) then

skip = .true.
return

end if

cosbj = cosbet(J)

sinbj = sinbet(j)

ssO = (syyO-sxxO)*sinbj*cosbj + sxyO*(cosbj**2-sinbj**2)

9- 12 Developer's Tutorial for the C,qM Testbed Architecture Revised 10/14/1988

Printing Data Printing Results

snO = axxO*sinbj**2 2.*sxyO*sinbj*cosbj + syyO*cosbj**2

call SOMIGLIANA (xp, yp, xj. yj, sj,

$ 1, em, pr, cosbj, sinbj,

$ uxus, uxun, uxss, uxsn,

$ uyus. uyun. uyss. uysn,

$ sxxus, sxxun, sxxss, sxxsn,

$ syyus, syyun, syyss, syysn,

$ sxyus, sxyun, sxyss, sxysn)

if (ksym .eq. I .or. ksym .eq. 3) then

call SOMIGLIANA (xp, yp. 2.*xsym-xme(j), yj, sj,

$ -I. em, pr, cosbj, -sinbj,

$ uxus, uxun, uxss, uxsn,

$ uyus. uyun. uyss, uysn.

$ sxxus, sxxun, sxxss, sxxsn,

$ syyus, syyun, syyss, syysn.

$ sxyus, sxyun, sxyss, sxysn)
end if

if (ksym .eq. 2 .or. ksym .eq. 3) then

call SOMIGLIANA (xp, yp, xj, 2.*ysym-yme(J), sj,

$ -I. em. pr. -cosbj, sinbj,

$ uxus, uxun, uxss, uxsn,

$ uyus, uyun, uyss, uysn,

$ sxxus, sxxun, sxxss, sxxsn,

$ syyus, syyun, syyss, syysn.

$ sxyus, sxyun, sxyss, sxysn)

end if

if (ksym .eq. 3) then

call SOMIGLIAIIA (xp. yp, 2.*xsym-xme(j). 2.*ysym-yme(j). sj,

$ I. em. pr, -cosbj. -sinbj,

$ uxus, uxun, uxss, uxsn,

$ uyus, uyun, uyss, uysn,

$ sxxus, sxxun, sxxss, sxxsn,

$ syyus, syyun, syyss, syysn,

$ sxyus, sxyun, sxyss, sxysn)
end if

usj = x(2*j-l)

unj = x(2*j)

ssj = b(2*j-l) - ssO

snj = b(2*j) - snO

if (kod(j) .eq. I) then

usj = b(2*j-1)

unj = b(2*j)

ssj = x(2*j-l)

snj = x(2*j)

else if (kod(j) .eq. 2) then

usj = b(2*j-l)

ssj = x(2*j)

else if (kod(j) .eq. 3) then

Revised 10/I4/1988 Developer's Tutorial for the CSM Testbed Architecture 9- 13

Printing Results Printing Data

unj = b(2*j)

snj = x(2*j)

end if

ssg = 0.5*ssj/g

sng = 0.5*snj/g

ux = ux + uxus*usj + uxun_unj + uxss*ssg + uxsn*sng

uy = uy + uyus*usj * uyun*unj + uyss*ssg + uysn*sng

usj = 2.*g*usj

unj = 2.*g*unj

sigxx = sigxx + sxxus_usj + sxxun*unj + sxxss*ssj + sxxsn*snj

sigyy = sigyy + syyus*usj + syyun*unj + syyss*ssj + syysn*snj

sigxy = sigxy * sxyus*usj + sxyun*unj + sxyss*ssj + sxysn*snj

2000 continue

return

end
...

Finally, FIELDP calls subroutine SOMIGLIAIIA to evaluate the important boundary-on-field-

point influence coemcients:

Calculate field influence coefficients from Somigliana's formula

subroutine

$
$
$
$
$
$

SOMIGLIA}IA

(x. y, xj, yj, aj. msym, em, pr, cosb, sinb,

uxus, uxun, uxss. uxsn,

uyus, uyun, uyss, uysn,

sxxus, sxxun, sxxss, sxxsn,

syyus, syyun, syyss, syysn,

sxyus, sxyun, sxyss, sxysn)

implicit

real

real

real

real

real

real

integer

real

real

real

real

real

real

real

real

real

real

none

x. y. xj, yj. aj. em, pr, cosb, sinb

uxus, uxun, uxss, uxsn

uyus. uyun. uyss. uysn

sxxus, sxxun, sxxss, sxxsn

syyus, syyun, syyss, syysn

sxyus, sxyun, sxyss, sxysn

msym

pi. con. prl, pr2, pr3

cxb, cyb, cost, sing, cpa. cma

rls. r2s. fll. f12

tbl, tb2, tb3, tb4, tb5, tb6. tb7

uxust, uxunt, uxsst, uxsnt

uyust, uyunt, uysst, uysnt

sxxust, sxxunt, sxxsst, sxxsnt

syyust, syyunt, syysst, syysnt

sxyust, sxyunt, sxvsst, sxysnt

cosb2, sinb2, cos2b, sin2b

9- 14 Developer's Tutorial for the CSM 'l'_,slbed Architecture Revised 10/14/1988

Printing Data Printing Results

pi = 4.*atan2(1.,1.)

con = 1.0/(4.*pi*(1.-pr))

prl = l.-2*pr

pr2 = 2._(l.-pr)

pr3 = 3.-4.*pr

cxb = (x-xj)*cosb + (y-yj)*sinb

cyb = -(x-xj)*sinb + (y-yj)*cosb

¢ma =

cpa =
rls =

r2s =

fll =

f12 =

tb2 =

tb3 =

tbl =

tb4 =

tb5 =

tb6 =
tb7 =

cxb aj

cxb + aj
cma**2 + cyb**2

cpa**2 + cyb*'_2
0.5*log(rls)

0.5*log(r2s)
-con*(fll-fl2)

con*(atan2(cpa,cyb)-atan2(cma,cyb))

-cyb*tb3 + con*(cma*fll-cpa*fl2)

con*(cyb/rls-cyb/r2s)

con*(cma/rls-cpa/r2s)
con_((cma**2-cyb**2)/rls**2-(cpa**2-cyb**2)/r2s**2)

-con*2._cyb*(cma/rls**2-cpa/r2s**2)

uxust = pr1*sinb*tb2 - pr2*cosb*tb3 ÷ cyb*(sinb*tb4-cosb*tb5)

uxunt = prl*cosb*tb2 ÷ pr2*sinb*tb3 - cyb*(cosb*tb4+slnb*tb5)

uxsst = pr3*cosb*tbl - cyb*(sinb*tb2+cosb*tb3)

uxsnt = -pr3*sinb*tbl + cyb*(cosb*tb2-sinb*tb3)

uyust = -prl*cosb*tb2 - pr2:_:sinb*tb3 - cyb*(cosb*tb4+sinb*tb5)

uyunt = prl*sinb*tb2 - pr2_cosb*tb3 - cyb*(sinb_tb4-cosb*tb5)

uysst = pr3*sinb*tbl + cyb*(cosb*tb2-sinb*tb3)

uysnt = pr3*cosb*tbl + cyb*(sinb_tb2+cosb*tb3)

cosb2 = cosb*cosb

sinb2 = sinb*sinb

cos2b = cosb2-sinb2

sin2b = 2.*sinb*cosb

sxxust = 2.:_cosb2*tb4 + sin2b*tb5 cyb*(cos2b*tb6-sin2b*tb7)

syyust = 2.*sinb2*tb4 - sin2b*tb5 ÷ cyb*(cos2b*tb6-sin2b*tb7)

sxyust = sin2b*tb4 - cos2b*tb5 - cyb*(sin2b*tb6+cos2b*tb7)

sxxunt = -tb5 - cyb*(sin2b*tb6÷cos2b*tb7)

syyunt = -tb5 + cyb*(sin2b*tb6+cos2b*tb7)

sxyunt = cyb*(cos2b*tb6-sin2b*tb7)

sxxsst = -tb2 - pr2*(cos2b*tb2-sin2b*tb3)

$ + cyb*(cos2b*tb4+sin2b*tb5)

syysst = -tb2 - pr2*(cos2b*tb2-sin2b*tb3)

$ - cyb*(cos2b*tb4+sin2b_'tb5)

sxysst = - pr2*(sin2b*tb2+cos2b*tb3)

Revised 10//14/1988 Developer's Tutorial for the CSM Testbed Architecture 9- 15

Printing Results Printing Data

$ + cyb*(sln2b*tb4-cos2b*tbS)

exxsnt = -tb3 + prl*(sin2b*tb2+cos2b*tb3)

$ + cyb_:(sin2b*tb4-cos2b*tb5)

syysnt = -tb3 - prl*(sin2b*tb2÷cos2b*tb3)

$ - cyb_(sin2b*tb4-cos2b_tb5)

sxysnt = - prl_(cos2b*tb2-sin2b_tb3)

$ - cyb*(cos2b*tb4*sin2b_tb5)

UXUS =

uxun =

UXSS =

uxsn =

uyus =

uyun =

uyss =

uysn =

uxus + msym-_uxust

uxun + uxunt

uxss * msym*uxsst

uxsn + uxsnt

uyus + msym*uyust

uyun + uyunt

uyss + msym*uysst

uysn * uysnt

sxxus =

sxxun =

sxxss =

sxxsn =

syyus =

syyun =

syyss =

syysn =

SXyUS =

sxyun =

sxyss =

sxysn =

sxxus ÷ msym*sxxust

sxxun + sxxunt

sxxss ÷ msym_sxxsst

sxxsn ÷ sxxsnt

syyus * msym*syyust

syyun + syyunt

syyss + msym_syysst

syysn + syysnt

sxyus + msym_sxyust

sxyun + sxyunt

sxyss ÷ msym_sxysst

sxysn + sxysnt

return

end

The DBEM2 Processor is ('omplele.

9- 16 l)eveloper's Tutorial for tile CSM Teslbed Architectl_re Revised 10/14/1988

DBEM2 Structure

10. DBEM2 Structure

After all the coding details given in _5.0 throllgh §(,).(I it is perhaps refreshing tt) gel an

overall picture of the structure of l)l-_Eikl2. A hierarchical diagram of the module structure

provides a portion of the picture:

DBEM2

DOCOMMAND

BUILD

CLEAR

CLOSE

DEFIIIE

DEF II,IE_BOUNDARY_COND ITI ONS

BCVALUES

DEFIHE ELEMENTS

DEF IfIE_MATERIAL

DEFINE .FIELD_LOCATIOI'IS

DEFINE. PRESTRESS

DEF INE_SEGMEN TS

DEFI }IE.SYMMETRY

GENERATE

COEFF

SETUP

OPEl]

PRII.IT

PRII,IT_BOUIIDARY_CONDITIONS

PRII,lT BOUIIDARY _RESULTS

PRINT_COEFFICIENTS

PRI liT_REAL_MATR IX

PRI_IT_ELEMENTS

PRINT FIELD_LOCATIONS

PRINT FIELD.RESULTS

FIELDP

SOMIGLIANA

PRINT MATERIAL

PRINT PRESTRESS

PRIIIT RHS

PRII,IT.REAL MATRIX

PRIIIT SEGMEIITS

PRIIIT.SOLUTIOII

PRII.IT REAL MATRIX

PRIIIT SYMMETRY

SOLVE

GAUSSER

STOP

Revised 10/14/1988 l)eveloper's Tutorial for the CSM Testbed Architecture 10- !

DBEM2 Structure

This diagram of course excludes the NICE utilities such as the CLIP and GAL-DBM
system. With this omission noted, the deepestmodule level is five. This is a feature
symptomatic of a fairly simple Processor. (Actual production Processorsin the NICE
system reachmodule levelsof order 15-20.)

Another part of the picture is provided by a diagram of the I)IIEM2 GAL l,ibrary

structure of datasets and associated record names:

DBEM2 GAL LIBRARY

BCVALUES

BVN

BVS

KODE

COEFF

C

ELEMENT

B

COSBET

HLENG

ROD

IIUMBE

SIHBET

XME

YME

FIELD

LIIIDEF

NIHTOP

XFIRST

XLAST

YFIRST

YLAST

MATERIAL

EM

PR

PRESTRESS

SXXO

SXYO

SYYO

RHS

R

10- 2 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

I)BEM2 Structure

SEGMEI'/T

NUMEL

SEGDEF

XBEG

XEND

YBEG

YEI_D

SOLUTION

X

SYMMETRY

KSYM

XSYM

YSYM

Of course not all of the datasets will appear in all Libraries; only the datasets corresponding

to the data that are stored appears.

A diagram that shows the interactioll between the database and the Processor modules
J

provides a connection between the first two diagrams. In the diagram below the Processor
module commands are shown on the left, and the corresponding GAL Library datasets are

shown on the left. The _---- symbol indicates that the data in the designated dataset is

either loaded or stored within the designated module. The _-- symbol indicates that the

corresponding dataset must be h)aded before the designated command should be entered.

By searching the diagram for the * symbol you can see which command along with a

L0hD sub-command must be entered to load the desired dataset.

Revised 10/14/1988 l)eveloper's Tutorial for the t:SM Testbed Architecture 10- 3

DBEM2 Structure

DEFIHE

DEFINE_SEGMENTS _ Dataset: SEGMEHT

DEFINE_ELEMENTS ,--_ Updates Record I#UMEL in Dataset:

DEFINE_BOUNDARY_CONDITIONS +--+ Dataset: BCVALUES

DEFINE_ATERIAL _- _ Dataset: MATERIAL

DEFINE_SYMMETRY _--. Dataset: SYMMETRY

DEFINE_PRESTRESS +...., Dataset: PRESTRESS

DEFINE_FIELD LOCATIONS . _ Dataset: FIELD

BUILD +_- Dataset: SEGMENT

_-.- Dataset: BCVALUES

- Dataset: ELEMENT

GENERATE _-- Dataset:

_-- Dataset:

_-- Dataset:

_--- Dataset:

- Dataset:

-- Dataset:

SOLVE _- Dataset:

- Dataset:

_--- Dataset:

Dataset:

PRIHT

ELEMENT

MATERIAL

SYMMETRY

PRESTRESS

COEFF

RHS

COEFF

RHS

ELEMENT

SOLUTION

PRIIIT_BOUHDARY CONDITIOHSDataset: BCVALUES

PRINTBOUNDARY_RESULTSDataset: MATERIAL

+ Dataset: ELEMENT

.....Dataset: SOLUTIOH

PRINT_COEFFICIENTS _ Dataset: ELEMENT

_-- Dataset: COEFF

PRINT_ELEMENTS ,-- Dataset: ELEMENT

PRINT_FIELD LOCATIONS +....Dataset: FIELD

PRI_IT_FIELDRESULTS _ Dataset:

,-- Dataset:

,- Dataset:

_- Dataset:

, Dataset:

, Dataset:

FIELD

PRESTRESS

MATERIAL

ELEMENT

SYMMETRY

SOLUTION

PRIIIT MATERIAL , Dataset: MATERIAL

PRINT PRESTRESS .-- Dataset: PRESTRESS

PRINTRHS _-- Dataset: ELEMENT

.....Dataset: RHS

PRIIIT.SEGMENTSDataset:

PRINT_SOLUTION _--Dataset:

+- Dataset:

PRINT.SYMMETRY _-- Dataset:

SEGMEIIT

ELEMEHT

SOLUTIOII

SYMMETRY

10- 4 Developer's Tutorial ft_r the CSM Testbed Architecture

SEGMENT

Revised 10/14/1988

I)BEM2 Structure

Now we have enough information on how tile Processor and tile GAL-DBM work

lolzeih_,r re) discuss some p_)l[,ntial _,xlensirms I() l.his si1_ll)l_' Processor.

• To make the Processor more "user gentle" you can add some checks to determine if the

data required at this stage have been entered or loaded. If not you can then tell the

user what is missing and what needs to l)e done to rectify the situation. To imt)lement

this you will need a data structure with tlags to indicate whether the darta have been

entered or loaded. And you will need a corresponding table that contains the commands

needed to enter or load the data.

You can get very elaborate if you let the user indicate whether the data are to be loaded

or entered at tile keyboard. 3'hen based on the user response you can search the open

GAL Library for the proper dataset and load it, or jump to the proper subroutine for

entering the data from the keyboard.

You can even enter the realm of artificial intelligence (AI). You would develop some rules

fl)r what order the data are entere(l, what data are Needed fi)r what command, what

commands perform what tasks, etc. Then with a simple forward chaining inference

engine you can assist the user at an)' point in the analysis by telling them what usual

comes next, what data are needed, how to gel. to some point in the analysis from where

tile user asks, etc.

• To enter a research mode or maximum flexibility mode you may wish to break the

DBEM2 Processor into several independently executable Processors. A good starting

point would be pre-processing - all of the DEFII/E commands, BUILD, GENERATE, SOLVE,

and post-processing all of the PRIIIT cornnlands. Now you could have other bound-

ary elements that would be incorporated in the BUILD process. Or somewhat easier,

you can replace the SOLVE Processor with a new solver, SOLVE_HEW, and compare the

performance of the two solvers. Of course output data generated by the post-processing

Processor can be stored on the database. Then you could develop plot Processors to

display tile data.

You can be very ambilious and (oral)the the boundary element method with a finite

element code. Here you would nee(l to develop some special matrix Processors to

properly assemble the system matrix. Or" be very brave and try a coupled solution

procedure.

Anyway, I hope you can see the unlimited potential of developing computational

software in this mode. A common commarld language and a common database manager

to unify the software is a very powerfiJl paradigm.

"From little acorns the mighty oak does grow."

Revised L0/I.I/19_8 Developer's Tutorial for the CSM Testbed Architecture 10- 5

I)BEM2 Structure

THIS PAGE LEFT BLANK INTENTIONAI,IA.

10- 6 Developer'sTutorial for the CSM ltstl)ed Architecture Revised10/14/1988

An Example Problem

11. An Example Problem

It is conw'uient to test DBEIvl2 on the sa.iTle example pmhlem used hy f'roHch and

Starfield [4]. The problem concerns a unit-radius circular hole in an infinite body under

uniaxial tension at infinity. The boundary element discretization for one-quarter of the

hole is showtl ill Figure i!-i.

(a)

,<---

<_---

<---

t

.._..---
J

Y

._-__>

--->

0"xx= 103

Co) _Y

(i_o)
E?,X

Figure 11-1. (:ircular hole in an intinite body:

(a) I_roblen_ sperificalions, (b) bour_dary eleme_d_ model

Both z =Oand y -0 are symmetry lines. The boundary contour is approximated by six

straight-line segment.s, each of which cor_sists of one bout_dary element. Two field point

lines are chosen along portions of the z and t/axes as shown in Figure Ii-l(a).

Revised 10/'20,'1988 Developer's Tutorial for the CSM Testbed Architecture 11- 1

An Example Problem

The input _r this problem is prepared (with the text editor) in the form of a script
command file:

open lib=circhole .gal

clear

def segments

seg=! b=l,O e=.9659..2588

seg=2 b=.9659,.2588 e=.8660,.5000

seg=3 b=.8660,.5000 e=.7071..7071

seg=4 b=.7071,.7071 e=.5000,.8660

seg=5 b=.5000,.8660 e=.2588,.9659

seg=6 b=.2588,.9659 e=O,1

store

end

def material

em=7.E4 ; pr=0.2 ; store ; end

def symmetry

xsym=O ; ysym = 0 ; store ; end

def prestress

sxxO=lO0 ; store ; end

def field

line=l f=1,0 1=6,0 p=9

line=2 f=O,l 1=0,6 p=9

store

end

pri seg ; pri mat ; pri bou ; pri symm ; pri pres ; pri field

build�store ; gen/store ; sol/store

pri res ; pri res/field

Note that there is no need _r DEFINE ELEMEFIT input data becallse each segment contains

,>tlly one boundary element, which is the de_ult assumption.

(!pon starting the DBEM2 processor, this file is inserted in the command stream

through an ADD directive {3], _13.1. For example, under UNIX:

> dbem2

DBEM2> _add circhole.add

where circhole .add is the assumed name of the input file. The printed results shouht

thexl be compared with those given on Appendix C of Crouch and Starfield {,1}.

lh, re is what you would see on your screen.

Tables initialized

Boundary Segment Data

Segm Elements Xbeg Ybeg Xend Yend

1 i 1.000 O, 0.9659 0.2588

2 1 0.9659 0.2588 0.8660 0.5000

3 1 0.8660 0.5000 0.707! 0.7071

4 1 0.7071 0.7071 0.5000 0.8660

11- 2 Developer's Tutorial for the CSM Testbed Architecture Revised 10/20/1988

An Example Problem

5 l 0.5000

6 t 0.2588

0.8660

0.9659

0.2588

O.

0.9659

i.O00

Material Property Data
Elastic modulus: 7.000E+04

Poisson's ratio: 0.200

Boundary Conditions Data

Segm Given Shear

I SS and NS O.

2 SS and NS O.

3 SS and NS O.

4 SS and NS O.

5 SS and NS O.

6 SS and NS O.

l,lormal

O.

O.

O.

O.

O.

O.

Symmetry Data

Symmetry about axis X= O.

and axis Y= O.

Prestress (Initial Field Stresses) Data

Sigma_xx: I00. Sigma_yy: O. Sigma_xy:

Field Location Data

Line Int.Pts x-first y-first x-last y-last

1 9 1.000 O. 6.000 O.

2 9 O. i.O00 O. 6.000

Discrete model building completed: 6 boundary elements

Influence coefficient matrix & RHS vector generated

Discrete equations solved

Displacements and Stresses at Boundary Element Midpoints

Elem u_s u_n

1 -4.768E-04 -2.649E-03

2 -1.302E-03 -2.177E-03

3 -1.778E-03 -1.359E-03

4 -1.778E-03 -4.142E-04

5 -1.302E-03 4.038E-04

6 -4.767E-04 8.761E-04

u_x u_y
2.689E-03 -1.267E-04

2.509E-03 -3.697E-04

2.161E-03 -5.836E-04

1.663E-03 -7.539E-04

1.048E-03 -8.712E-04

3.582E-04 -9.309E-04

sig_s

0

0

0

0

0

0

Displacements and Stresses at Specified Field Points

Lin x y u_x u_y sig_xx sig_yy

O°

sig_n

0

0

0

0

0

0

sig_xy

Revised 10/14/1988 Developer's Tutorial for the CSM Testbed Architecture 11- 3

An Example Problem

1.000

1. 500

2. 000

2 500

3 000

3 500

4 000

4 500

5 000

5. 500

6. 000

0.000 Point is too close to boundary
0.000 2.116E-03 5.483E-11 64.8 -42.0

0.000 1.668E-03 1.026E-I0 72.3 -18.1

0.000 1.365E-03 1.255E-10 80.2 -10.2

0.000 1.151E-03 2,173E-I0 85.5 -6.54

0.000 9.935E-04 2.065E-10 89.0 -4.57

0.000 8.733E-04 1.669E-10 91.4 -3.38

0.000 7.787E-04 3.464E-II 93.1 -2.61

0.000 7.024E-04 1.132E-I0 94.4 -2.08

0.000 6.396E-04 4.157E-10 95.3 -1.70

0.000 5.870E-04 7.854E-11 96.0 -1.41

-3 078E-06

-2 897E-06

-3 334E-07

-I 722E-09

2 339E-06

1 921E-06

-2.656E-07

1.784E-07

-1.803E-07

2.896E-06

Lin x y u_x u_y sig_xx sig_yy

2 0.000 1.000 Point is too close to boundary

2 0.000 1.500 -2.307E-11 -2.615E-03 167. 28.7

2 0.000 2.000 -5.174E-11 -5.075E-03 130. 21.4

2 0.000 2.500 4.023E-11 -6.942E-03 117. 15.1

2 0 000 3.000 -6.035E-II -8.478E-03 111. 11.0

2 0 000 3.500 2.717E-10 -9.789E-03 108. 8.33

2 0 000 4.000 -1.864E-I0 -1.094E-02 106. 6.49

2 0 000 4.500 -1.627E-I0 -1.195E-02 105. 5.19

2 0 000 5.000 -7.970E-II -1.287E-02 104. 4.24 5

2 0 000 5.500 -2.068E-12 -1.371E-02 103. 3.53 4

2 0 000 6.000 5.215E-I0 -1.447E-02 102. 2.98 6

Now lets take a look at tile database that was generated during this run.

commands that begin with _ are directives. The directives are described in [3].

DBEM2> _toc

sig_xy

-9.665E-07

-7.445E-07

6.003E-07

1.752E-07

1 715E-06

-I 311E-06

-I 560E-06

272E-07

855E-07

761E-07

All of the

+++++++++++++++++++++++++++++++++++÷++++÷++÷++++++++÷+++++++÷+++÷++++÷+÷÷

+ Library 1 File: circhole.gal +

+ Form: GAL82 File size: 1973 words No. of Datasets: 9 +

+++÷+++÷++++++++++++++÷+÷++÷÷+÷++++++÷++++++_++÷+÷+÷+÷÷++÷+++÷÷+++÷++++÷+

Seq# Date Time Lk Records Processor Dataset name

i 06:01:88 20:07:20 0 36 DBEM2 SEGMENT

2 06:01:88 20:07:20 0 2 DBEM2 MATERIAL

3 06:01:88 20:07:20 0 3 DBEM2 SYMMETRY

4 06:01:88 20:07:20 0 3 DBEM2 PRESTRESS

5 06:01:88 20:07:20 0 12 DBEM2 FIELD

6 06:01:88 20:07:20 0 49 DBEM2 ELEMENT

7 06:01:88 20:07:20 0 12 DBEM2 COEFF

8 06:01:88 20:07:20 0 12 DBEM2 RHS

9 06:01:88 20:07:20 0 12 DBEM2 SOLUTION

t tere we see the table of contents (toe) for Ill(, (;AI, l,it)rary that was generated during

the rllll. _I'ou call see that tile file name is circhole.gal, tile size of the file, there are 9

datasets, all(| other information, like the dale and time the data were stored.

11- ,l l)eveloper's Tutorial for the CSM "l'esl bed Architecture Revised 10/14/1988

An Example Problem

To see ttle second level of the database, tile records, tile *print rat or *rat directive

13], §49,,1, can be used. Lets take a look at some of the record structure. You may wish to

compare this output to tile second diagram ill §10.0 or compare with tile discussion in _3.

DBEM2> *rat 1,1

Record

Key
IIUMEL

SEGDEF

XBEG

XEND

YBEG

YE[TD

Table of dataset SEGMENT

L_cyc H cyc Type Log size
1 6 I 1

1 6 I 1

1 6 S 1

1 6 S 1

1 6 S 1

1 6 S 1

DBEM2> *rat 1,2

Record Table of dataset MATERIAL

Key L_cyc H_cyc Type Log_size
EM 0 0 S i

PR 0 0 S 1

DBEM2> *rat 1,7

Record Table of dataset COEFF

Key L_cyc H_cyc Type Log_size

C 1 12 S 12

The first, Humber after the *rat is the CAL Library idi, which is printed as the

Library in the *toc 13], §,19.1, output shown above. The seco_ld ntlmber is the dat;_set

sequence Tlumber, also shown in the 1,able of contents output. The *rat output tells .,_

the nml_es of the records, the Key; the rlttmber of records, from L.cyc to H_cyc; the data

type, 1 is integer --- S is floating poi.t; and the. logical size of each record, For example,

the record key r_UMEL i_i the dataset SEGMEI,/T has six records containing one integer in each

w(:ord. The record keys]. the dataset MATERIAL are a bit different in that each record

¢_rlty has one floating point number, so there are no cycles. The record key C in the dataset

COEFF has 12 re_ords each containi.K 12 tloating point numbers. This is the square .gystem

(oeflicient matrix.

We can also look at, the dala stored within each r_'c.r(] key.

DBEM2> *print rec 1,1 ,IlUMEL. 1:6
Record IIUNEL.I

1:

Record NUMEL.2

1:

Record IIUMEL.3

i:

Record

of dataset SEGMENT

1

of dataset SEGMEI1T

1

of dataset SEG_IEIIT

1

I_UMEL.4 of dataset SEGMEI/T

Y,qRevised 10/14/1988 l)evelol)er's T.torial for the (,_M Testl)ed Architecture 11 5

An Example Problem

I: I

Record IIUMEL.5 of dataset SEGMEIIT

I: I

Record }JUMEL.6 of dataset SEGMENT

I: 1

DBEM2> *print rec 1,2,EM
Record EM of dataset MATERIAL

I: 7.0000E+04

DBEM2> *print rec 1.2.PR
Record PR of dataset MATERIAL

1: 2.0000E-O1

DBEM2> *print rec 1.7.C.7
Record C.7 of dataset COEFF

1:4.6007E-04 -2.4613E-02 2.0957E-03 -3.1559E-02

7:4.5021E-01 4.1663E-03 1.1955E-02 7.2579E-02

Here we have used the *print record directive f3}, §49.2 & §49.3, to show: 1) the

values in the six records in tile record key rlUMEL, 2) tile values of the elastic modulus, EM,

and Poisson's ratio, PR, in the dataset MATERIAL, and 3) tile seventh column of tile system

coefficient matrix, C, which is stored in tile datasel COEFF.

Now to exit the DBEM2 Processor we type stop to produce the _ilowing on our

screen:

DBEM2> stop

<DM> CLOSE, Ldi: 1, File: circhole.gal

Hope you enjoyed the ride!
<CL> P/IS exhausted

ENDRUN called by CLIP
..

1.2205E-02 -6.3592E-02

1.4381E-03 4.3028E-02

A few days later we decide we would like to solve the same problem, but we wish to

izicr_,ase the number of elemouts to 2 for each segment to see how much this improves the
results. So here is what it looks like.

....................................

aml 9: 17 > dbem2
DBEM2> clear

Tables initialized

DBEM2> open lib=circhole.gal

<DM> OPEN, Ldi: I, File: circhole.gal , Attr: old. Block I/O

DBEM2> _toc

+ Library I File: circhole.gal ÷
* Form: GAL82 File size: 1973 words No. of Datasets: 9 ÷

÷++÷+÷÷+÷÷÷÷+÷÷+÷++++÷++++++++÷÷÷÷÷÷÷+÷÷++÷÷+÷÷+÷+÷÷+÷÷÷÷+÷+÷÷÷÷+÷÷÷÷÷÷÷+

Seq# Date Time Lk Records Processor Dataset name
I 06:01:88 20:07:20 0 36 DBEM2 SEGMENT

2 06:01:88 20:07:20 ' 0 2 DBEM2 MATERIAL

3 06:01:88 20:07:20 0 3 DBEM2 SYMMETRY

11- 6 l)eveloper's Tutorial for the ('SM Testbed Architect,re Revised 10/14/1988

An Example Problenl

4 06:01:88 20:07:20 0

5 06:01:88 20:07:20 0

6 06:01:88 20:07:20 0

7 06:01:88 20:07:20 0

8 06:01:88 20:07:20 0

9 06:01:88 20:07:20 0

3

12

49

12

12

12

DBEM2

DBEM2

DBEM2

DBEM2

DBEH2

DBEM2

PRESTRESS

FIELD

ELENENT

COEFF

RHS

SOLUTION

DBEM2> def seg; load ; end

DBEM2> def mat ; load ; end

DBEM2> def sym ; load ; end

DBEM2> def pres ; load ; end

DBEM2> def field ; load ; end

DBEM2> pri seg

Boundary Segment Data

Segm Elements Xbeg Ybeg

i 1 1.000 O.

2 i 0.9659 0.2588

3 1 0.8660 0.5000

4 i 0.7071 0.707i

5 i 0.5000 0.8660

6 1 0.2588 0.9659

Xend

0.9659

0.8660

0.7071

0.5000

0.2588

O.

¥end

0.2588

0.5000

0.7071

0.8660

0.9659

1.000

DBEM2> pri pres

Prestress (Initial Field Stresses) Data

Sigma_xx: I00. Sigma yy" O. Sigma :.:y : O.

DBEM2> pri mat

Material Property Data

Elastic modulus: 7.000E+04

Poisson's ratio: 0.200

DBEM2> help def elem

<DBEM2>

DEFIIIE

ELEMENTS

The DEFII_IE ELEMENTS command introduces subordinate commands

that specify into how many boundary elements segments are to

be subdivided. These commands have the form:

SEG = isegl isegk ELEM = nel nek

This specifies that segment isegl is to be subdivided into

nel (ge I) boundary elements, segment iseg2 into ne2

elements, and so on. Enter the STORE command to store this

data in the IIUMEL record in the SEGMENT dataset. Enter the

Revised I0/14/1988 Developer's Tutorial for tile CSM Testbed Architecture 11- 7

An Example Problem

LOAD command to load previously defined data from the NUMEL

record in the SEGME_IT dataset. Terminate these commands

with an END command.

DBEM2> def elem

Element data> seg = 1:6 elem = 2,2,2,2,2,2

Element data> end

DBEM2> pri seg

Boundary Segment Data

Segm Elements Xbeg Ybeg

I 2 1.000 O.

2 2 0.9659 0.2588

3 2 0.8660 0.5000

4 2 0.7071 0.7071

5 2 0.5000 0.8660

6 2 0.2588 0.9659

Xend

0.9659

0.8660

0.7071

0.5000

0.2588

O.

Yend

0.2588

0.5000

0.7071

0.8660

0.9659

i.O00

DBEM2> build

Discrete model building completed: 12 boundary elements

DBEM2> generate

Influence coefficient matrix a RHS vector generated

DBEM2> solve

Discrete equations solved

DBEM2> pri res

Displacements and Stresses at Boundary Element Midpoints

Elem u_s u_n

I -4.791E-04 -2.755E-03

2 -1.288E-03 -2.28gE-03

3 -1.769E-03 -1.483E-03

4 -1.743E-03 -5.670E-04

5 -1.265E-03 I g77E-04

6 -3.329E-04 4

7 -1.523E-03 -5

8 -1.513E-03 -2

9 -1.306E-03 3

i0 -1.I07E-03 5

11 -5.808E-04 9

12 -3.178E-04 9

u_x u_y
2.794E-03 -I 152E-04

2.438E-03 -9

2.047E-03 -I

1.191E-03 -I

6.131E-04 -1

904E-04 -1.865E-04 -5

829E-04 1.563E-03 -4

601E-04 1.359E-03 -7

710E-04 1.064E-03 -8

584E-04

193E-04

855E-04

782E-04

067E-03

394E-03

124E-03

626E-04

646E-04

147E-04

424E-04

8.093E-04 -9.396E-04

4.557E-04 -9.873E-04

1.864E-04 -I.019E-03

sig_s

0

0

0

0

0

0

0

0

0

O.

O.

O.

sig_n

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

O.

DBEM2> pri res /field

Displacements and Stresses at Specified Field Points

Lin x y u_x u_y sig_xx sig_yy

I 1.000 0.000 Point is too close to boundary

i 1.500 0.000 1.935E-03 1.465E-11 55.5 -53.9

sig_xy

-I.I08E-06

11- 8 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

An Example Problem

2 000
2 500
3 000
3 500
4 000

4 500
5 000
5. 500
6. 000

O. 000
O. 000
O. 000
O. 000
O. 000

O. 000
O. 000
O. 000
O. 000

1.432E-03

1.142E-03

9.520E-04

8.165E-04

7.150E-04

6.360E-04
5.727E-04
5.208E-04
4.776E-04

-5.I07E-11
1.263E-10

2.523E-10

5 708E-10

6 382E-10

4 635E-10

5 684E-10

7 305E-10

5 825E-10

70.7

80.0
85 6

89 1

91 5

93 2

94 5

95 4

96 1

-17.6

-8.45
-4.90

-3.20

-2.25

-1.68

-1.30

-1.04

-0.853

-4.039E-06

-3.628E-06
1.794E-06

1.658E-06

2.942E-07

-1.418E-06

-4.365E-07

2.026E-06

2.337E-06

Lin x y
2 0.000 1.000
2 0.000 1.500

2 0.000 2.000

2 0.000 2.500

2 0.000 3.000
2 0.000 3.500
2 0.000 4.000

2 0.000 4.500

2 0,000 5.000

2 0.000 5.500
2 0.000 6.000

DBEM2> stop

u_x u y sig_xx sig_yy

Point is too close to boundary
-3.197E-II -5.243E-03

7.015E-II -9.gO4E-03

-I.200E-IO -1.347E-02

1.169E-I0 -1.640E-02

9.394E-11 -1.889E-02

-3.967E-I0 -2.107E-02

3.040E-10 -2.301E-02

-2.895E-10 -2.474E-02

-7.609E-11 -2.632E-02

5.487E-I0 -2.777E-02

I, File: circhole.gal<DM> CLOSE, Ldi:

Hope you enjoyed the ride!

<CL> PHS exhausted

ENDRUt[called by CLIP

160 24.8

126 18.4

114 13.0

109 9 48

107 7 17

105 5 60

104 4 48

103 3 66
103 3 04

102 2 57

sig_xy

4.456E-07

-7.870E-08

-1.185E-06

1 955E-06

-7 394E-07

-2 295E-06
3 884E-07

-1 996E-06

-6 769E-07

I 350E-06

This interactive session starts ot[with tile usual clear aud open commands. Then

to make sure that l |lave the correct GAI, I,ibrary, the _toc I3], ._,19.1, is used. Every-

thing looks okay, so the l)roblem definition commands to define segments, materials,

symmetry, prestress, and field locations are issued with the subcommand load to

load these data from the (;AI, Library. The print segments command is used to look

at the old segment data that were just loaded --- gives you a warn, feeling to see that the

data are really there. Just for insurauce I cheek the prestress data and the material data.

Now, I want to enter data to use 2 elements per segment, but] can't remember the proper

syntax, so I use the help define elements command to get the on-line help (see 13],

Appendix }[for a discussion of help files). Now, I enter the data aud check it with another

print segments command. Note thai, I now have 2 elements for each segment. Then the

three number crunching modules, build, generate, and solve, are brought into action to

obtain the new solution. Finally, the new results are printed. Note that, I did not store

any of the new problem data. Only a simple cha_tge was made to compare answers. If big

changes were made, I wouht have slored the new data.

Experiment with your own (:hazlges to this probl(,m. "l'h(,ll try some new problems.

E nj oy !

Revised 10/14/1988 Developer's Tutorial for the CSM Testbed Arclfitecture 11- 9

An Example Problem

THIS ['AGE LEFT BLANK INTENTIONALLY.

!1- 10 Developer's Tutorial for the CSM 'l'estl)e(I Arclnitecture Revised 10/1,t/1988

References

12.

!

References

Ir,'lippa, (_arlos A.. Th,' Comlmt;,tion;,I ,_,tructural ,_h,rhat, ics "l}'sll)od Architect ,Ire:

Volume III The hllert_lc_,, NASA (_1_-17h1386 ()troller 1998.

2 Wright, Mary A., I{,,_,_lbru_,,,, _rl_ll'(" E., and li'elipl)a, (]a.rh)s A., '/'he C_mtl_utalional
StructurM Mechanirs 7_stbed Architecture: Volume IV The Glol_al-l)atal)ase

Manager (;AL-I)BM., NASA CR-178387 October 1988.

3 Felippa. Carlos A. and Underwood, Philip, The Computational Structural Mechan-

ics Testbed Architecture: Volume lI - The Directives, NASA CR-178385 October

1988.

4 Crouch, S. L. and Starfield, A. M., Boundary Element Methods in Solid Mechanics:

with Applications in Rock Mechanics and Geological Engineering. G. Allen and

Unwin, London, 1983.

Revised 10/20/1988 I)ev('loper's Tutorial fo, the (;SN| T(,stt)ed A,('hitectur(' 12- I

References

"FItlS PAGE I, EFT BLANK INTI;;NTIONALLY.

12- 2 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

1. Report No.

NASA CR-181732

Report Documentation Page

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

Application Developer's Tutorial for the CSM Testbed Architecture

7. Author(,)

I'hillip Underwood and Carlos A. Felippa

9. Performing Organization Name and Address

Lockheed Missiles and Space Company, Inc.
Research and Development Division
3251 Hanover Street

Palo Alto, California 94304

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665-5225

5. Report Date

October 1988

6. Performing Organization Code

8. Performing Organization Report No.

LMSC-D878511

10. Work Unit No.

505-63-01-10

11. Contract or Grant No.

NAS1-18444

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Phillip Underwood, Lockheed Missiles and Space Company, Inc.
Palo Alto, California 94304

Carlos A. Felippa, Center for Space Structures and Controls,
University of Colorado, Boulder, CO 80309-0429

Langley Technical Monitor: W. Jefferson Stroud
16. Abstract

This tutorial serves as an illustration of the use of the programmer interface of the CSM Testbed

Architecture (NICE). It presents a complete, but simple, introduction to using both the GAL-DBM

(Global Access Library-Database Manager) and CLIP (Command Language Interface Program) to write
a NICE processor. Familiarity with the CSM Testbed architecture is required.

17.Key Words (Suggestedby Authors(s))
Structuralanalysissoftware

Command language interfacesoftware

Data management software

Distribution Statement

Unclassified- -Unlimited

Subject Category 39

19. Security Ciualf.(of this report)

Unclassified 20. Security Classif.(of this page)Unclassified 21. No. of Pages[22. Price101 | A06
NASA FORM 1626 oct ss

For sale by the National Technical Information Sere'ice, Springfield, Virginia 22161-2171

